Question

In: Statistics and Probability

Exercise 8-37 Suppose the prime minister wants an estimate of the proportion of the population who...

Exercise 8-37

Suppose the prime minister wants an estimate of the proportion of the population who support his current policy on health care. The prime minister wants the estimate to be within 0.16 of the true proportion. Assume a 90% level of confidence. The prime minister's political advisors estimated the proportion supporting the current policy to be 0.43. (Round the intermediate calculation to 2 decimal places. Round the final answer to the nearest whole number.)

a. How large of a sample is required?

b. How large of a sample would be necessary if no estimate were available for the proportion that support current policy?

Exercise 8-36

A processor of carrots cuts the green top off each carrot, washes the carrots, and inserts six to a package. Twenty packages are inserted in a box for shipment. To test the mass of the boxes, a few were checked. The mean mass was 9.3 kg, the standard deviation 0.22 kg. How many boxes must the processor sample to be 95% confident that the sample mean does not differ from the population mean by more than 0.07 kg? (Round the intermediate calculation to 2 decimal places. Round the final answer to the nearest whole number.)

Sample size _____

Solutions

Expert Solution

Solution,

Given that,

a) = 0.43

1 - = 1 - 0.43 = 0.57

margin of error = E = 0.16

Z/2 = Z0.05  = 1.645

sample size = n = (Z / 2 / E )2 * * (1 - )

= (1.645 / 0.16)2 * 0.43 * 0.57

= 25.90

sample size = n = 26

b) =  1 - =   0.5

sample size = n = (Z / 2 / E )2 * * (1 - )

= (1.645 / 0.16)2 * 0.5 * 0.5

= 26.42

sample size = n = 27

c) Z/2 = Z0.025 = 1.96  

sample size = n = [Z/2* / E] 2

n = [1.96 * 0.22 / 0.07 ]2

n = 37.94

Sample size = n = 38


Related Solutions

Suppose the prime minister wants an estimate of the proportion of the population who support his...
Suppose the prime minister wants an estimate of the proportion of the population who support his current policy on health care. The prime minister wants the estimate to be within 0.21 of the true proportion. Assume a 90% level of confidence. The prime minister's political advisors estimated the proportion supporting the current policy to be 0.48. (Round the intermediate calculation to 2 decimal places. Round the final answer to the nearest whole number.) a. How large of a sample is...
Suppose the prime minister wants an estimate of the proportion of the population who support his...
Suppose the prime minister wants an estimate of the proportion of the population who support his current policy on health care. The prime minister wants the estimate to be within 0.21 of the true proportion. Assume a 90% level of confidence. The prime minister's political advisors estimated the proportion supporting the current policy to be 0.48. (Round the intermediate calculation to 2 decimal places. Round the final answer to the nearest whole number.) a. How large of a sample is...
Suppose the prime minister wants an estimate of the proportion of the population who support his...
Suppose the prime minister wants an estimate of the proportion of the population who support his current policy on health care. The prime minister wants the estimate to be within 0.03 of the true proportion. Assume a 80% level of confidence. The prime minister's political advisors estimated the proportion supporting the current policy to be 0.3. (Round the intermediate calculation to 2 decimal places. Round the final answer to the nearest whole number.) a. How large of a sample is...
Suppose the U.S. president wants an estimate of the proportion of the population who support his...
Suppose the U.S. president wants an estimate of the proportion of the population who support his current policy toward revisions in the health care system. The president wants the estimate to be within 0.03 of the true proportion. Assume a 98% level of confidence. The president's political advisors estimated the proportion supporting the current policy to be 0.54. a.) How large of a sample is required? (Round the z-values to 2 decimal places. Round up your answer to the next...
Suppose the U.S. president wants an estimate of the proportion of the population who support his...
Suppose the U.S. president wants an estimate of the proportion of the population who support his current policy toward revisions in the health care system. The president wants the estimate to be within 0.03 of the true proportion. Assume a 98% level of confidence. The president's political advisors estimated the proportion supporting the current policy to be 0.54. a.) How large of a sample is required? (Round the z-values to 2 decimal places. Round up your answer to the next...
Suppose the U.S. president wants an estimate of the proportion of the population who support his...
Suppose the U.S. president wants an estimate of the proportion of the population who support his current policy toward revisions in the health care system. The president wants the estimate to be within 0.02 of the true proportion. Assume a 95% level of confidence. The president's political advisors estimated the proportion supporting the current policy to be 0.59. (Use z Distribution Table.) a. How large of a sample is required? (Round the z-values to 2 decimal places. Round up your...
Suppose the U.S. president wants an estimate of the proportion of the population who support his...
Suppose the U.S. president wants an estimate of the proportion of the population who support his current policy toward revisions in the health care system. The president wants the estimate to be within 0.03 of the true proportion. Assume a 90% level of confidence. The president's political advisors estimated the proportion supporting the current policy to be 0.56. (Use z Distribution Table.) a. How large of a sample is required? (Round the z-values to 2 decimal places. Round up your...
We are interested to estimate the proportion of the population who favor a candidate. Suppose that...
We are interested to estimate the proportion of the population who favor a candidate. Suppose that 210 of the people in a sample of 500 favored the candidate. (a) What is the proportion estimate, p-hat, and the standard error? (b) Find the 90% confidence interval for the proportion of the population who favor the candidate. Interpret result.
Suppose the U.S. president wants to estimate the proportion of the population that supports his current...
Suppose the U.S. president wants to estimate the proportion of the population that supports his current policy toward revisions in the health care system. The president wants the estimate to be within 0.03 of the true proportion. Assume a 99% level of confidence. The president’s political advisors found a similar survey from two years ago that reported that 62% of people supported health care revisions.  (Answers must be whole numbers.) How large of a sample is required? How large of a...
Suppose the U.S. president wants to estimate the proportion of the population that supports his current...
Suppose the U.S. president wants to estimate the proportion of the population that supports his current policy toward revisions in the health care system. The president wants the estimate to be within 0.03 of the true proportion. Assume a 98% level of confidence. The president’s political advisors found a similar survey from two years ago that reported that 63% of people supported health care revisions. How large of a sample is required? (Round intermediate values to 3 decimal points. Round...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT