Question

In: Electrical Engineering

A system is described by the differential equation −5y′′(t)−3y′(t)+3y(t)=ys(t), Find the transfer function associated with this...

A system is described by the differential equation −5y′′(t)−3y′(t)+3y(t)=ys(t), Find the transfer function associated with this system H(s). Write the solution as a single fraction in s. H(s)=_______________?

Solutions

Expert Solution


Related Solutions

A. Find a particular solution to the nonhomogeneous differential equation y′′ + 4y′ + 5y =...
A. Find a particular solution to the nonhomogeneous differential equation y′′ + 4y′ + 5y = −15x + e-x y = B. Find a particular solution to y′′ + 4y = 16sin(2t). yp = C. Find y as a function of x if y′′′ − 10y′′ + 16y′ = 21ex, y(0) = 15,  y′(0) = 28, y′′(0) = 17. y(x) =
1. The differential equation y''+4y=f(t) and y'(0)=y(0)=0 a. Find the transfer function and impulse response. b....
1. The differential equation y''+4y=f(t) and y'(0)=y(0)=0 a. Find the transfer function and impulse response. b. If f(t)=u(t)-u(t-1). Find the y(t) by convolution and Laplace techniques. u(t) is unit step function. c. If f(t)= cos(t) ; find the y(t) by convolution and Laplace techniques. 2. The differential equation y''+3y'+2y=e^(-3t) and y'(0)=y(0)=0 a. Find the system transfer function and impulse response. b. Find the y(t) by convolution and Laplace techniques. 3. y''+3y'+2y=f(t) and y'(0)=y(0)=0 Plot y(t) without any calculations and write...
Find two solutions in Power Series for the differential equation (x - 1) and "+ 3y...
Find two solutions in Power Series for the differential equation (x - 1) and "+ 3y = 0 around the ordinary point x = 0.
Find a cubic approximation for the general solution to the differential equation (3+2x)y'' + 3y' -...
Find a cubic approximation for the general solution to the differential equation (3+2x)y'' + 3y' - xy = 0 using a series centered at x0=0
Solve the given differential equation by undetermined coefficients. y''' − 3y'' + 3y' − y =...
Solve the given differential equation by undetermined coefficients. y''' − 3y'' + 3y' − y = x − 9^x
Solve the given differential equation by undetermined coefficients. y''' − 3y'' + 3y' − y =...
Solve the given differential equation by undetermined coefficients. y''' − 3y'' + 3y' − y = x − 8ex
Consider the linear time invariant system described by the transfer function G(s) given below. Find the...
Consider the linear time invariant system described by the transfer function G(s) given below. Find the steady-state response of this system for two cases: G(s) = X(s)/F(s) = (s+2)/(3(s^2)+6s+24) when the input is f(t) = 5sin(2t) and f(t) = 5sin(2t) + 3sin(2sqrt(3)t)
Solve the differential equation using the Laplace transform.   y''' + 3y''+2y' = 100e-t , y(0) =...
Solve the differential equation using the Laplace transform.   y''' + 3y''+2y' = 100e-t , y(0) = 0, y'(0) = 0, y''(0) = 0
3. ÿ+ 6ẏ + 5y = r̈+ 9r (a) Find the system’s transfer function (b) Plot...
3. ÿ+ 6ẏ + 5y = r̈+ 9r (a) Find the system’s transfer function (b) Plot poles and zeros on the s-plane (c) Provide the system’s time response from the poles of the transfer function (d) Is the system stable? Why or why not? (e) What type of system is it? (undamped, over damped, critically damped, underdamped, etc.?)
Find the particular solution to the equation. y''-4y'+5y=(e^(2t))(sec(t))
Find the particular solution to the equation. y''-4y'+5y=(e^(2t))(sec(t))
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT