In: Statistics and Probability
Student # |
Gender |
Height |
Shoe |
Age |
Hand |
1 |
F |
68 |
8.5 |
20 |
R |
2 |
F |
60 |
5.5 |
27 |
R |
3 |
F |
64 |
7 |
31 |
R |
4 |
F |
67 |
7.5 |
19 |
R |
5 |
F |
65 |
8 |
20 |
R |
6 |
F |
66 |
9 |
29 |
R |
7 |
F |
62 |
9.5 |
30 |
L |
8 |
F |
63 |
8.5 |
18 |
R |
9 |
F |
60 |
5 |
19 |
L |
10 |
F |
63 |
7.5 |
42 |
R |
11 |
F |
61 |
7 |
20 |
R |
12 |
F |
64 |
7.5 |
17 |
R |
13 |
F |
65 |
8 |
19 |
R |
14 |
F |
68 |
8 |
19 |
R |
15 |
F |
63 |
7.5 |
18 |
R |
16 |
F |
62 |
7.5 |
19 |
R |
17 |
F |
64 |
7 |
23 |
R |
18 |
F |
72 |
11 |
28 |
R |
19 |
F |
62 |
8 |
20 |
R |
20 |
F |
59 |
6.5 |
29 |
R |
21 |
F |
64 |
8.5 |
19 |
R |
22 |
F |
68 |
9.5 |
23 |
R |
23 |
F |
65 |
9.5 |
34 |
R |
24 |
F |
63 |
8 |
27 |
R |
25 |
F |
65 |
8 |
23 |
R |
26 |
F |
62 |
7.5 |
30 |
R |
27 |
F |
67 |
7.5 |
31 |
L |
28 |
F |
66 |
9 |
37 |
R |
29 |
F |
61 |
6 |
24 |
R |
30 |
F |
61 |
6.5 |
46 |
R |
31 |
F |
68 |
8 |
20 |
R |
32 |
F |
63 |
7.5 |
42 |
R |
33 |
F |
63 |
5.5 |
33 |
R |
34 |
F |
58 |
5 |
20 |
R |
35 |
F |
65 |
8 |
44 |
R |
36 |
F |
69 |
9 |
28 |
R |
37 |
F |
68 |
9 |
20 |
R |
38 |
F |
63 |
7 |
49 |
R |
39 |
F |
62 |
6.5 |
19 |
R |
40 |
F |
66 |
7.5 |
19 |
R |
41 |
F |
69 |
7.5 |
55 |
R |
42 |
F |
69 |
11 |
40 |
R |
43 |
F |
63 |
6.5 |
19 |
R |
44 |
F |
61 |
7.5 |
20 |
R |
45 |
F |
68 |
9 |
19 |
R |
46 |
F |
65 |
9 |
25 |
R |
47 |
F |
62 |
7 |
31 |
R |
2. Using the SCC men’s/women’s class sample data at the ?=0.05, is there enough evidence to conclude that there is a significant linear correlation between men’s/women’s height and men’s/women’s shoe size?
a. State the null and alternate hypotheses.
b. Specify the level of significance.
c. State the correlation coefficient. (3 decimal places)
d. State the critical value from Table 11. (Use the value of n that is closest to your sample size.)
e. State whether to “reject the ?0” or “fail to reject the ?0”.
f. Interpret the decision in the context of the original claim
Let X: Height and Y: Shoe size
From given data, we have to construct below table to calculate correlation coefficient (r):
Height (X) | Shoe (Y) | X2 | Y2 | X*Y | |
68 | 8.5 | 4624 | 72.25 | 578 | |
60 | 5.5 | 3600 | 30.25 | 330 | |
64 | 7 | 4096 | 49 | 448 | |
67 | 7.5 | 4489 | 56.25 | 502.5 | |
65 | 8 | 4225 | 64 | 520 | |
66 | 9 | 4356 | 81 | 594 | |
62 | 9.5 | 3844 | 90.25 | 589 | |
63 | 8.5 | 3969 | 72.25 | 535.5 | |
60 | 5 | 3600 | 25 | 300 | |
63 | 7.5 | 3969 | 56.25 | 472.5 | |
61 | 7 | 3721 | 49 | 427 | |
64 | 7.5 | 4096 | 56.25 | 480 | |
65 | 8 | 4225 | 64 | 520 | |
68 | 8 | 4624 | 64 | 544 | |
63 | 7.5 | 3969 | 56.25 | 472.5 | |
62 | 7.5 | 3844 | 56.25 | 465 | |
64 | 7 | 4096 | 49 | 448 | |
72 | 11 | 5184 | 121 | 792 | |
62 | 8 | 3844 | 64 | 496 | |
59 | 6.5 | 3481 | 42.25 | 383.5 | |
64 | 8.5 | 4096 | 72.25 | 544 | |
68 | 9.5 | 4624 | 90.25 | 646 | |
65 | 9.5 | 4225 | 90.25 | 617.5 | |
63 | 8 | 3969 | 64 | 504 | |
65 | 8 | 4225 | 64 | 520 | |
62 | 7.5 | 3844 | 56.25 | 465 | |
67 | 7.5 | 4489 | 56.25 | 502.5 | |
66 | 9 | 4356 | 81 | 594 | |
61 | 6 | 3721 | 36 | 366 | |
61 | 6.5 | 3721 | 42.25 | 396.5 | |
68 | 8 | 4624 | 64 | 544 | |
63 | 7.5 | 3969 | 56.25 | 472.5 | |
63 | 5.5 | 3969 | 30.25 | 346.5 | |
58 | 5 | 3364 | 25 | 290 | |
65 | 8 | 4225 | 64 | 520 | |
69 | 9 | 4761 | 81 | 621 | |
68 | 9 | 4624 | 81 | 612 | |
63 | 7 | 3969 | 49 | 441 | |
62 | 6.5 | 3844 | 42.25 | 403 | |
66 | 7.5 | 4356 | 56.25 | 495 | |
69 | 7.5 | 4761 | 56.25 | 517.5 | |
69 | 11 | 4761 | 121 | 759 | |
63 | 6.5 | 3969 | 42.25 | 409.5 | |
61 | 7.5 | 3721 | 56.25 | 457.5 | |
68 | 9 | 4624 | 81 | 612 | |
65 | 9 | 4225 | 81 | 585 | |
62 | 7 | 3844 | 49 | 434 | |
Total | = 3022 | = 364.5 | = 194736 | = 2906.75 | = 23572.5 |
Now, we have to compute correlation coefficient (r) using above table values, we get
a) State the null and alternative hypothesis:
= 0 (There is no correlation between X and Y)
0 (There is correlation between X and Y)
b) Specify level of significance ():
We have given, = 0.05
c) State the correlation coefficient (r): We have already calculated using above table which is r = 0.735
d) Critical value:
Using = 0.05 and df = n-2 = 45, critical value is 0.288
e) decision rule: Here, r = 0.735 > 0.288, we reject the null hypothesis
f) Conclusion: We conclude that there is sufficient evidence to prove that there is correlation between Men's/Women's Height and Men's/women's Shoe size.