Question

In: Advanced Math

For the following exercises, use the given information about the polynomial .. Degree 3. Zeros at x = 4, x = 3, and x = 2. y-intercept at (0, −24).

For the following exercises, use the given information about the polynomial graph to write the equation.

Degree 3. Zeros at x = 4, x = 3, and x = 2. y-intercept at (0, −24).

Solutions

Expert Solution

Consider the information provided in the exercise,

The degree is 3 and zeros are at x = 4, x = 3, x = 2.

 

Therefore, combine all this

f(x) = a(x – 4)(x – 3)(x – 2)

 

To determine stretch factor a, put y intercept (0, -24) in the equation.

-24 = 1(0 – 4)(0 – 3)(0 – 2)

-24 = -24a

    a = 1

 

Hence, the equation is f(x) = (x – 4)(x – 3)(x – 2).


Hence, the equation is f(x) = (x – 4)(x – 3)(x – 2).

Related Solutions

For the following exercises, use the information about the graph of a polynomial ...The y-intercept is (0, −4). The x-intercepts are (−2, 0), (2, 0). Degree is 2. End behavior: as x → −∞, f(x) → ∞, as x → ∞, f(x) → ∞.
For the following exercises, use the information about the graph of a polynomial function to determine the function. Assume the leading coefficient is 1 or −1. There may be more than one correct answer.The y-intercept is (0, −4). The x-intercepts are (−2, 0), (2, 0). Degree is 2. End behavior: as x → −∞, f(x) → ∞, as x → ∞, f(x) → ∞.
For the following exercises, use the information about the graph of a polynomial .. The y-intercept is (0, 9). The x-intercepts are (−3, 0), (3, 0). Degree is 2. End behavior: as x → −∞, f(x) → −∞, as x → ∞, f(x) → −∞.
For the following exercises, use the information about the graph of a polynomial function to determine the function. Assume the leading coefficient is 1 or −1. There may be more than one correct answer.The y-intercept is (0, 9). The x-intercepts are (−3, 0), (3, 0). Degree is 2. End behavior: as x → −∞, f(x) → −∞, as x → ∞, f(x) → −∞.
Degree 5. Roots of multiplicity 2 at x = −3 and x = 2 and a root of multiplicity 1 at x=−2. y-intercept at (0, 4). For the above exercises, use the given information about the polynomial graph to write the equation.
Degree 5. Roots of multiplicity 2 at x = −3 and x = 2 and a root of multiplicity 1 at x=−2. y-intercept at (0, 4).  For the above exercises, use the given information about the polynomial graph to write the equation.
For the following exercises, use the given information about the polynomial..Degree 4. Roots of multiplicity 2 at x = 1/2 and roots of multiplicity 1 at x = 6 and x = −2. y-intercept at (0,18).
For the following exercises, use the given information about the polynomial graph to write the equation.Degree 4. Roots of multiplicity 2 at x = 1/2 and roots of multiplicity 1 at x = 6 and x = −2. y-intercept at (0,18).  
Degree 5. Roots of multiplicity 2 at x = 3 and x = 1, and a root of multiplicity 1 at x = −3. y-intercept at (0, 9). For the following exercises, use the given information...
For the following exercises, use the given information about the polynomial graph to write the equation.Degree 5. Roots of multiplicity 2 at x = 3 and x = 1, and a root of multiplicity 1 at x = −3. y-intercept at (0, 9)
Find a polynomial f(x) of degree 3 that has the indicated zeros and satisfies the given...
Find a polynomial f(x) of degree 3 that has the indicated zeros and satisfies the given condition. −5, 1, 2;    f(3) = 48 Find a polynomial f(x) of degree 3 that has the indicated zeros and satisfies the given condition. −3, −2, 0;    f(−4) = 24 Find a polynomial f(x) of degree 3 that has the indicated zeros and satisfies the given condition. −2i, 2i, 5;    f(1) = 40 Find the zeros of f(x), and state the multiplicity of each zero. (Order your...
The y-intercept is (0, 0). The x-intercepts are (0, 0), (2, 0). Degree is 3. End behavior: as x → −∞, f(x) → −∞, as x → ∞, f(x) → ∞.
The y-intercept is (0, 0). The x-intercepts are (0, 0), (2, 0). Degree is 3. End behavior: as x → −∞, f(x) → −∞, as x → ∞, f(x) → ∞.  
For the following exercises, use the given information about the polynomial graph to write the equation. Degree 5. Double zero at x = 1, and triple zero at x = 3. Passes through the point (2, 15).
For the following exercises, use the given information about the polynomial graph to write the equation.Degree 5. Double zero at x = 1, and triple zero at x = 3. Passes through the point (2, 15).
p(x)=x^4-2x^3+x^2+2x-2 zero: 1-i use the given zero to find all the zeros of the polynomial function
p(x)=x^4-2x^3+x^2+2x-2 zero: 1-i use the given zero to find all the zeros of the polynomial function
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT