In: Anatomy and Physiology
Why is Hyperkalemia correlated with Acidosis, while Hypokalemia is correlated with Alkalosis?
Answer :
Hyperkalamia and acidosis :
Hyperkalemia is an elevated level of potassium (K+) in the blood.Normal potassium levels are between 3.5 and 5.0 mmol/L (3.5 and 5.0 mEq/L) with levels above 5.5 mmol/L defined as hyperkalemia.Typically hyperkalemia does not cause symptoms.Occasionally when severe it can cause palpitations, muscle pain, muscle weakness, or numbness. Hyperkalemia can cause an abnormal heart rhythm which can result in cardiac arrest and death.
Acidosis can cause hyperkalemia as the elevated hydrogen ions in the cells can displace potassium, causing the potassium ions to leave the cell and enter the bloodstream. However, in respiratory acidosis or organic acidosis such as lactic acidosis, the effect on serum potassium are much less significant.
Hypokalemia and alkalosis :
Hypokalemia is a low level of potassium (K+) in the blood serum.Mild low potassium does not typically cause symptoms.Symptoms may include feeling tired, leg cramps, weakness, and constipation. Low potassium also increases the risk of an abnormal heart rhythm, which is often too slow and can cause cardiac arrest.
An alkalosis can cause temporary hypokalemia by causing a shift of potassium out of the plasma and interstitial fluids into the urine via a number of interrelated mechanisms.
1) Type B intercalated cells in the collecting duct reabsorb H+ and secrete HCO3, while in type A intercalated cells protons are secreted via both H+-K+ATPases and H+ ATP-ases on the apical/luminal surface of the cell. By definition, the H+-K+ATPase reabsorbs one potassium ion into the cell for every proton it secretes into the lumen of the collecting duct of a nephron. In addition, when H+ is expelled from the cell (by H+ATP-ase), cations—in this case potassium—are taken up by the cell in order to maintain electroneutrality (but not through direct exchange as with the H+-K+ATPase).In order to correct the pH during alkalosis, these cells will use these mechanisms to reabsorb great amounts of H+, which will concomitantly increase their intracellular concentrations of potassium. This concentration gradient drives potassium to be secreted across the apical surface of the cell into the tubular lumen through potassium channels (this facilitated diffusion occurs in both Type B intercalated cells and Principal cells in the collecting duct).
2) Metabolic alkalosis is often present in states of volume depletion, such as vomiting, so potassium is also lost via aldosterone-mediated mechanisms.
3) During metabolic alkalosis, the acute rise of plasma HCO3− concentration (caused by vomiting, for example) will exceed the capacity of the renal proximal tubule to reabsorb this anion, and potassium will be excreted as an obligate cation partner to the bicarbonate.