Question

In: Advanced Math

For the following exercises, graph the transformation of f(x) = 2x. Give the horizontal asymptote, the domain, and the range. h(x) = 2x + 3

For the following exercises, graph the transformation of f(x) = 2x. Give the horizontal asymptote, the domain, and the range.

h(x) = 2x + 3

Solutions

Expert Solution

Consider the graph of the function;

h(x) = 2x + 3

 

The horizontal asymptote of the function is determined as follows:

 

Check horizontal asymptote for x = ±∞;

h(∞) = 2 + 3

        = 0 + 3

       = 3

 

Therefore, the horizontal asymptote is h(x) = 3.

 

Domain of the graph is set of all real numbers, that is (-∞, ∞).

 

Range is set of all real numbers greater than 3.

 

The graph of the function y = 2x + 3 is shown below;


Related Solutions

For the following exercises, graph the transformation of f(x) = 2x. Give the horizontal asymptote, the domain, and the range. f(x) = 2x − 2
For the following exercises, graph the transformation of f(x) = 2x. Give the horizontal asymptote, the domain, and the range.f(x) = 2x − 2
For the following exercises, make tables to show the behavior of the function near the vertical asymptote and reflecting the horizontal asymptote. f(x) = 2x/(x + 4)
For the following exercises, make tables to show the behavior of the function near the vertical asymptote and reflecting the horizontal asymptote.f(x) = 2x/(x + 4)
For the following exercises, each graph is a transformation of y = 2x. Write an equation describing the transformation.
For the following exercises, each graph is a transformation of y = 2x. Write an equation describing the transformation. 
For the following exercises, make tables to show the behavior of the function near the vertical asymptote and reflecting the horizontal asymptote. f(x) = 1/x -0 2
For the following exercises, make tables to show the behavior of the function near the vertical asymptote and reflecting the horizontal asymptote.f(x) = 1/x -0 2
f(x)= (4x)/(x2-4) Domain Vertical Asymtote Horizontal Asymtote slant asymptote
f(x)= (4x)/(x2-4) Domain Vertical Asymtote Horizontal Asymtote slant asymptote
Graph the function f(x) = 3.5(2)x. State the domain and range and give the y-intercept.
Graph the function f(x) = 3.5(2)x. State the domain and range and give the y-intercept.
The graph here shows transformations of the graph of f(x) = 2x. What is the equation for the transformation?
The graph here shows transformations of the graph of f(x) = 2x. What is the equation for the transformation?
Find the vertical asymptote (V.A.) and the horizontal asymptote (H.A.) of the function g(x) = 2x/...
Find the vertical asymptote (V.A.) and the horizontal asymptote (H.A.) of the function g(x) = 2x/ x- 5. Justify your answer using limits. a) The equation of the V.A. is ________ and the associated limit is: b) The equation of the H.A. is ________ and the associated limit is:
Let f(x) = 5x+3 and g(x) =2x-5. Find (f+g)(x),(f-g)(x),(fg)(x), and (f/g) (x). Give the domain of...
Let f(x) = 5x+3 and g(x) =2x-5. Find (f+g)(x),(f-g)(x),(fg)(x), and (f/g) (x). Give the domain of each. (f+g) (x) = (f-g)(x) = (fg)(x) = (f/g)(x) = The domain of f+g is_ The domain of f-g is_ The domain of fg is _ The domain of f/g is _ Please at the end provide showed work.
5. Consider the function f(x) = -x^3 + 2x^2 + 2. (a) Find the domain of...
5. Consider the function f(x) = -x^3 + 2x^2 + 2. (a) Find the domain of the function and all its x and y intercepts. (b) Is the function even or odd or neither? (c) Find the critical points, all local extreme values of f, and the intervals on which f is increasing or decreasing. (d) Find the intervals where f is concave up or concave down and all inflection points. (e) Use the information you have found to sketch...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT