In: Statistics and Probability
You may need to use the appropriate appendix table or technology to answer this question.
A simple random sample with
n = 59
provided a sample mean of 26.5 and a sample standard deviation of 4.4. (Round your answers to one decimal place.)
(a)
Develop a 90% confidence interval for the population mean.
(b)
Develop a 95% confidence interval for the population mean.
(c)
Develop a 99% confidence interval for the population mean.
Solution :
Given that,
(a)
t /2,df = 1.672
Margin of error = E = t/2,df * (s /n)
= 1.672 * ( 4.4/ 59)
Margin of error = E = 1.0
The 90% confidence interval estimate of the population mean is,
- E < < + E
26.5 - 1.0 < < 26.5 + 1.0
26.5 < < 27.5
(26.5 , 27.5)
(b)
t /2,df = 2.002
Margin of error = E = t/2,df * (s /n)
= 2.002 * (4.4 / 59)
Margin of error = E = 1.1
The 95% confidence interval estimate of the population mean is,
- E < < + E
26.5 - 1.1 < < 26.5 + 1.1
25.4 < < 27.6
(25.4 , 27.6)
(c)
t /2,df = 2.663
Margin of error = E = t/2,df * (s /n)
= 2.663 * (4.4 / 59)
Margin of error = E = 1.5
The 99% confidence interval estimate of the population mean is,
- E < < + E
26.5 - 1.5 < < 26.5 + 1.5
25 < < 28
(25 , 28)