In: Statistics and Probability
You may need to use the appropriate appendix table or technology to answer this question.
A simple random sample with
n = 59
provided a sample mean of 26.5 and a sample standard deviation of 4.4. (Round your answers to one decimal place.)
(a)
Develop a 90% confidence interval for the population mean.
(b)
Develop a 95% confidence interval for the population mean.
(c)
Develop a 99% confidence interval for the population mean.
Solution :
Given that,
(a)
t
/2,df = 1.672
Margin of error = E = t/2,df
* (s /
n)
= 1.672 * ( 4.4/
59)
Margin of error = E = 1.0
The 90% confidence interval estimate of the population mean is,
- E <
<
+ E
26.5 - 1.0 <
< 26.5 + 1.0
26.5 <
< 27.5
(26.5 , 27.5)
(b)
t
/2,df = 2.002
Margin of error = E = t/2,df
* (s /
n)
= 2.002 * (4.4 /
59)
Margin of error = E = 1.1
The 95% confidence interval estimate of the population mean is,
- E <
<
+ E
26.5 - 1.1 <
< 26.5 + 1.1
25.4 <
< 27.6
(25.4 , 27.6)
(c)
t
/2,df = 2.663
Margin of error = E = t/2,df
* (s /
n)
= 2.663 * (4.4 /
59)
Margin of error = E = 1.5
The 99% confidence interval estimate of the population mean is,
- E <
<
+ E
26.5 - 1.5 <
< 26.5 + 1.5
25 <
< 28
(25 , 28)