Question

In: Statistics and Probability

Suppose the following data are selected randomly from a population of normally distributed values. 41 51...

Suppose the following data are selected randomly from a population of normally distributed values. 41 51 43 48 44 57 54 39 40 48 45 39 40 Construct a 95% confidence interval to estimate the population mean.

Solutions

Expert Solution

We have for given data,          
              
Sample mean =45.31      
Sample standard deviation =5.9215  
Sample size =13      
Level of significance=1-0.95=0.05      
Degree of freedom =12      
              
t critical value is (by using t table)=   2.179      
              
Confidence interval formula is               


=(41.73,48.89)          
              
              
Lower confidence limit=41.73      
              
Upper confidence limit=48.89  


Related Solutions

Suppose the following data are selected randomly from a population of normally distributed values. According to...
Suppose the following data are selected randomly from a population of normally distributed values. According to the U.S. Bureau of Labor Statistics, the average weekly earnings of a production worker in July 2011 were $657.49. Suppose a labor researcher wants to test to determine whether this figure is still accurate today. The researcher randomly selects 56 production workers from across the United States and obtains a representative earnings statement for one week from each. The resulting sample average is $670.76....
A sample of 10 measurements, randomly selected from a normally distributed population, resulted in a sample...
A sample of 10 measurements, randomly selected from a normally distributed population, resulted in a sample mean=5.2, and sample standard deviation=1.8. Using ,alpha=0.01 test the null hypothesis that the mean of the population is 3.3 against the alternative hypothesis that the mean of the population < 3.3, by giving the following: degrees of freedom =9 critical t value the test statistic
A sample of 15 measurements, randomly selected from a normally distributed population, resulted in a sample...
A sample of 15 measurements, randomly selected from a normally distributed population, resulted in a sample mean, x¯¯¯=6.1 and sample standard deviation s=1.92. Using α=0.1, test the null hypothesis that μ≥6.4 against the alternative hypothesis that μ<6.4 by giving the following. a) The number of degrees of freedom is: df= . b) The critical value is: tα= . c) The test statistic is: ttest=
What is the probability that a randomly selected member of a normally distributed population will lie...
What is the probability that a randomly selected member of a normally distributed population will lie more than 1.8 standard deviations from the mean?
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed population of paired differences yields a sample mean of d ¯ =5.3 d¯=5.3 and a sample standard deviation of sd = 7.2. (a) Calculate a 95 percent confidence interval for µd = µ1 – µ2. Can we be 95 percent confident that the difference between µ1 and µ2 is greater than 0? (Round your answers to 2 decimal places.) Confidence interval = [ ,...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed population of paired differences yields a sample mean of d⎯⎯=4.2d¯=4.2 and a sample standard deviation of sd = 7.6. (a) Calculate a 95 percent confidence interval for µd = µ1 – µ2. Can we be 95 percent confident that the difference between µ1 and µ2 is greater than 0? (Round your answers to 2 decimal places.) Confidence interval = [ ,  ] ; (Click to...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed population of paired differences yields a sample mean of d⎯⎯=4.2d¯=4.2 and a sample standard deviation of sd = 7.6. (a) Calculate a 95 percent confidence interval for µd = µ1 – µ2. Can we be 95 percent confident that the difference between µ1 and µ2 is greater than 0? (Round your answers to 2 decimal places.) Confidence interval = [ ,  ] ; (Click to...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed population of paired differences yields a sample mean d¯ =4.6d¯ =4.6 of and a sample standard deviation of sd = 7.6. (a) Calculate a 95 percent confidence interval for µd = µ1 – µ2. Can we be 95 percent confident that the difference between µ1 and µ2 is greater than 0? (Round your answers to 2 decimal places.) Confidence interval = [ ,  ] ;...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed population of paired differences yields a sample mean d⎯⎯ =4.0d¯ =4.0 of and a sample standard deviation of sd = 6.9. (a) Calculate a 95 percent confidence interval for µd = µ1 – µ2. Can we be 95 percent confident that the difference between µ1 and µ2 is greater than 0? (Round your answers to 2 decimal places.) Confidence interval = [ ,  ] ;...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed population of paired differences yields a sample mean of d¯=4.3 and a sample standard deviation of sd = 7.2. (a) Calculate a 95 percent confidence interval for µd = µ1 – µ2. (Round your answers to 2 decimal places.) Confidence interval = [ _____ , _____ ]; Yes or No? (b) Test the null hypothesis H0: µd = 0 versus the alternative hypothesis Ha:...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT