In: Finance
Effective Annual Interest: | |||||||
APR=i | |||||||
Number of Compounding in a year=n | |||||||
Effective Annual Interest=R | |||||||
1+R=(1+(i/n))^n | |||||||
R=((1+(i/n))^n)-1 | |||||||
i | n | R=(1+((i/n)^n))-1 | |||||
APR | Number of compounding in a year | Effective annual interest | Effective interest 9%) | ||||
10.20% | a | 0.1020 | 1 | 0.102 | 10.200% | ||
9.50% | b | 0.0950 | 4 | 0.098438279 | 9.844% | ||
9.35% | c | 0.0935 | 12 | 0.097612779 | 9.761% | ||
9.30% | d | 0.0930 | 365 | 0.097448735 | 9.745% | ||
Smallest annual interest | 9.745% | ||||||
ANSWER: | |||||||
d. 9.3% APR compounded daily | |||||||