In: Finance
| Effective Annual Interest: | |||||||
| APR=i | |||||||
| Number of Compounding in a year=n | |||||||
| Effective Annual Interest=R | |||||||
| 1+R=(1+(i/n))^n | |||||||
| R=((1+(i/n))^n)-1 | |||||||
| i | n | R=(1+((i/n)^n))-1 | |||||
| APR | Number of compounding in a year | Effective annual interest | Effective interest 9%) | ||||
| 10.20% | a | 0.1020 | 1 | 0.102 | 10.200% | ||
| 9.50% | b | 0.0950 | 4 | 0.098438279 | 9.844% | ||
| 9.35% | c | 0.0935 | 12 | 0.097612779 | 9.761% | ||
| 9.30% | d | 0.0930 | 365 | 0.097448735 | 9.745% | ||
| Smallest annual interest | 9.745% | ||||||
| ANSWER: | |||||||
| d. 9.3% APR compounded daily | |||||||