Question

In: Statistics and Probability

The undergraduate grade point averages​ (UGPA) of students taking an admissions test in a recent year...

The undergraduate grade point averages​ (UGPA) of students taking an admissions test in a recent year can be approximated by a normal​ distribution, as shown in the figure. ​(a) What is the minimum UGPA that would still place a student in the top 10​% of​ UGPAs? ​(b) Between what two values does the middle 50​% of the UGPAs​ lie? u=3.32, o= 0.16

Solutions

Expert Solution

a)

µ=   3.32                  
σ =    0.16  

P(X>x) = 0.10
P(X≤x) =   0.9                  
                      
Z value at    0.9   =   1.2816   (excel formula =NORMSINV(   0.9   ) )
z=(x-µ)/σ                      
so, X=zσ+µ=   1.282   *   0.16   +   3.32  
X   =   3.53   (answer)          

b)

µ =    3.32                          
σ =    0.16                          
proportion=   0.50   
proportion left    0.50 is equally distributed both left and right side of normal curve                       
z value at   0.25   = ±   0.674   (excel formula =NORMSINV(   0.50   / 2 ) )      
                              
z = ( x - µ ) / σ                              
so, X = z σ + µ =                              
X1 =   -0.674   *   0.16   +   3.32   =   3.21  
X2 =   0.674   *   0.16   +   3.32   =   3.43


Related Solutions

The undergraduate grade point averages​ (UGPA) of students taking an admissions test in a recent year...
The undergraduate grade point averages​ (UGPA) of students taking an admissions test in a recent year can be approximated by a normal​ distribution, as shown in the figure. ​(a) What is the minimum UGPA that would still place a student in the top 15​% of​ UGPAs? ​(b) Between what two values does the middle 50​% of the UGPAs​ lie? mean=3.24 SD=0.21
The undergraduate grade point averages​ (UGPA) of students taking an admissions test in a recent year...
The undergraduate grade point averages​ (UGPA) of students taking an admissions test in a recent year can be approximated by a normal​ distribution, as shown in the figure. ​(a) What is the minimum UGPA that would still place a student in the top 15​% of​ UGPAs? ​(b) Between what two values does the middle 50​% of the UGPAs​lie? mean- 3.28 Standard deviation- 0.17 A normal curve labeled mu = 3.28 and sigma = 0.17 is over a horizontal x-axis labeled...
The undergraduate grade point averages​ (UGPA) of students taking an admissions test in a recent year...
The undergraduate grade point averages​ (UGPA) of students taking an admissions test in a recent year can be approximated by a normal​ distribution, as shown in the figure. ​(a) What is the minimum UGPA that would still place a student in the top 55​% of​ UGPAs?​(b) Between what two values does the middle 5050​% of the UGPAs​ lie? 3.3842.76Grade point average mu equals 3.38μ=3.38 sigma equals 0.19σ=0.19 x
Suppose that grade point averages of undergraduate students at one university have a bell-shaped distribution with...
Suppose that grade point averages of undergraduate students at one university have a bell-shaped distribution with a mean of 2.61 and a standard deviation of 0.39. Using the empirical rule, what percentage of the students have grade point averages that are between 1.83 and 3.39?
Suppose that grade point averages of undergraduate students at one university have a bell-shaped distribution with...
Suppose that grade point averages of undergraduate students at one university have a bell-shaped distribution with a mean of 2.612.61 and a standard deviation of 0.390.39. Using the empirical rule, what percentage of the students have grade point averages that are between 1.831.83 and 3.393.39?
Suppose that grade point averages of undergraduate students at one university have a bell-shaped distribution with...
Suppose that grade point averages of undergraduate students at one university have a bell-shaped distribution with a mean of 2.62 and a standard deviation of 0.43. Using the empirical rule, what percentage of the students have grade point averages that are at least 1.76? Please do not round your answer.
Suppose that grade point averages of undergraduate students at one university have a bell-shaped distribution with...
Suppose that grade point averages of undergraduate students at one university have a bell-shaped distribution with a mean of 2.52 and a standard deviation of 0.43. Using the empirical rule, what percentage of the students have grade point averages that are between 1.23 and 3.81?
Students taking the Graduate Management Admissions Test (GMAT) were asked about their undergraduate major and intent...
Students taking the Graduate Management Admissions Test (GMAT) were asked about their undergraduate major and intent to pursue their MBA as a full-time or part-time student. A summary of their responses follows. Undergraduate Major Business Engineering Other Totals Intended Enrollment Full Time 423 394 75 892 Status Part Time 401 594 45 1,040 Totals 824 988 120 1,932 Develop a joint probability table for these data (to 3 decimals). Undergraduate Major Business Engineering Other Totals Intended Enrollment Full-Time Status Part-Time...
Students taking the Graduate Management Admissions Test (GMAT) were asked about their undergraduate major and intent...
Students taking the Graduate Management Admissions Test (GMAT) were asked about their undergraduate major and intent to pursue their MBA as a full-time or part-time student. A summary of their responses follows. Undergraduate Major Business Engineering Other Totals Intended Enrollment Status Full-Time 371 197 251 819 Part-Time 150 161 194 505 Totals 521 358 445 1,324 If required, round your answers to four decimal places. (a) Develop a joint probability table for these data. Undergraduate Major Business Engineering Other Totals...
Below are the grade point averages for 24 randomly chosen university business students during a recent...
Below are the grade point averages for 24 randomly chosen university business students during a recent semester. a) Is there sufficient evidence to indicate that the variances for the four classifications of students are not the same? Assume alpha is 0.05. b) What is the p-value for this problem? Explain its meaning in words. c) Is there sufficient evidence to indicate that the means for the four classifications of students are not the same? Use alpha = 0.05. d) If...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT