In: Statistics and Probability
A gambler plays a sequence of games that she either wins or loses. The outcomes of the games are independent, and the probability that the gambler wins is 2/3. The gambler stops playing as soon as she either has won a total of 2 games or has lost a total of 3 games. Let T be the number of games played by the gambler.
Answer:
Given that:
A gambler plays a sequence of games that she either wins or loses. The outcomes of the games are independent, and the probability that the gambler wins is 2/3.
The gambler stops playing as soon as she either has won a total of 2 games or has lost a total of 3 games
1. Find the probability mass function of T.
T can take possible values : 2, 3 and 4
As by the 4th game, either he would have won atleast 2 or lost atleast 3.
2. Find the mean of T.
3. Find the standard deviation of T.