In: Finance
Pelzer Printing Inc. has bonds outstanding with 9 years left to maturity. The bonds have a 8% annual coupon rate and were issued 1 year ago at their par value of $1,000. However, due to changes in interest rates, the bond's market price has fallen to $901.40. The capital gains yield last year was -9.86%.
| A | B | C | D | E | F | G | H | I | J | K |
| 2 | ||||||||||
| 3 | a) | |||||||||
| 4 | ||||||||||
| 5 | Face value | $1,000 | ||||||||
| 6 | Coupon rate | 8.00% | ||||||||
| 7 | Current Price | $901.40 | ||||||||
| 8 | Years to Maturity | 9 | years | |||||||
| 9 | Annual Coupon | 80 | =D4*D5 | |||||||
| 10 | Cash flow to investor will be as follows: | |||||||||
| 11 | Year | 0 | 1 | 2 | 3 | 4 | 5 | 9 | ||
| 12 | Cash flow | ($901) | $80 | $80 | $80 | $80 | $80 | $1,080 | =D9+D5 | |
| 13 | ||||||||||
| 14 | Yield to maturity is the rate at which if future NPV to Investor will be zero. | |||||||||
| 15 | ||||||||||
| 16 | Rate(nper,pmt,PV, [fv],type) function of excel can be used to find the yield to maturity as follows: | |||||||||
| 17 | NPER | 9 | ||||||||
| 18 | PMT | $80 | ||||||||
| 19 | PV | ($901.40) | ||||||||
| 20 | FV | $1,000 | ||||||||
| 21 | ||||||||||
| 22 | Yield to maturity | 9.69% | =RATE(D18,D19,D20,D21) | |||||||
| 23 | ||||||||||
| 24 | Thus yield to maturity is | 9.69% | ||||||||
| 25 | ||||||||||
| 26 | b) | |||||||||
| 27 | ||||||||||
| 28 | Current Yield | =Annual Coupon / Price of the bond | ||||||||
| 29 | =$80 / $901.40 | |||||||||
| 30 | 8.88% | =D9/D7 | ||||||||
| 31 | ||||||||||
| 32 | Hence the current yield is | 8.88% | ||||||||
| 33 | ||||||||||
| 34 | Expected Capital gain Yield | =YTM - Current Yield | ||||||||
| 35 | =9.69% - 8.88% | |||||||||
| 36 | 0.81% | |||||||||
| 37 | ||||||||||
| 38 | Hence Expected Capital gain yield | 0.81% | ||||||||
| 39 | ||||||||||
| 40 | Expected Capital gain yield can also be found as follows: | |||||||||
| 41 | Expected Capital gain Yield | =(Price after 1 Year - Current Price)/ Current Price | ||||||||
| 42 | After one Year, | |||||||||
| 43 | Time to maturity | 8 | Years | |||||||
| 44 | YTM | 9.69% | ||||||||
| 45 | Face Value | $1,000 | ||||||||
| 46 | Annual Coupon | $80.00 | ||||||||
| 47 | Price of bond | =Present value of all the cash flows | ||||||||
| 48 | =$80*(P/A,9.69%,8)+$1000*(P/F,9.69%,8) | |||||||||
| 49 | $908.76 | =D46*PV(D44,D43,-1,0)+D45*(1/((1+D44)^D43)) | ||||||||
| 50 | ||||||||||
| 51 | Expected Capital gain Yield | =(Price after 1 Year - Current Price)/ Current Price | ||||||||
| 52 | =($908.76 - $901.40)/$901.40 | |||||||||
| 53 | 0.82% | =(908.75-901.4)/901.4 | ||||||||
| 54 | ||||||||||
| 55 | Hence Expected capital gain Yield | 0.82% | ||||||||
| 56 | ||||||||||
| 57 | c) | |||||||||
| 58 | Since price of the bond is the present value of cash flows from the bond discounted at interest rate, | |||||||||
| 59 | therefore, change in interest rate will change the price of the bond. | |||||||||
| 60 | Thus both the current price and the future price will change. | |||||||||
| 61 | ||||||||||
| 62 | Hence the current yield will change and the realized return will differ from the YTM. | |||||||||
| 63 | Therefore the option (I) is correct. | |||||||||
| 64 | ||||||||||