In: Finance
Pelzer Printing Inc. has bonds outstanding with 9 years left to maturity. The bonds have a 8% annual coupon rate and were issued 1 year ago at their par value of $1,000. However, due to changes in interest rates, the bond's market price has fallen to $901.40. The capital gains yield last year was -9.86%.
A | B | C | D | E | F | G | H | I | J | K |
2 | ||||||||||
3 | a) | |||||||||
4 | ||||||||||
5 | Face value | $1,000 | ||||||||
6 | Coupon rate | 8.00% | ||||||||
7 | Current Price | $901.40 | ||||||||
8 | Years to Maturity | 9 | years | |||||||
9 | Annual Coupon | 80 | =D4*D5 | |||||||
10 | Cash flow to investor will be as follows: | |||||||||
11 | Year | 0 | 1 | 2 | 3 | 4 | 5 | 9 | ||
12 | Cash flow | ($901) | $80 | $80 | $80 | $80 | $80 | $1,080 | =D9+D5 | |
13 | ||||||||||
14 | Yield to maturity is the rate at which if future NPV to Investor will be zero. | |||||||||
15 | ||||||||||
16 | Rate(nper,pmt,PV, [fv],type) function of excel can be used to find the yield to maturity as follows: | |||||||||
17 | NPER | 9 | ||||||||
18 | PMT | $80 | ||||||||
19 | PV | ($901.40) | ||||||||
20 | FV | $1,000 | ||||||||
21 | ||||||||||
22 | Yield to maturity | 9.69% | =RATE(D18,D19,D20,D21) | |||||||
23 | ||||||||||
24 | Thus yield to maturity is | 9.69% | ||||||||
25 | ||||||||||
26 | b) | |||||||||
27 | ||||||||||
28 | Current Yield | =Annual Coupon / Price of the bond | ||||||||
29 | =$80 / $901.40 | |||||||||
30 | 8.88% | =D9/D7 | ||||||||
31 | ||||||||||
32 | Hence the current yield is | 8.88% | ||||||||
33 | ||||||||||
34 | Expected Capital gain Yield | =YTM - Current Yield | ||||||||
35 | =9.69% - 8.88% | |||||||||
36 | 0.81% | |||||||||
37 | ||||||||||
38 | Hence Expected Capital gain yield | 0.81% | ||||||||
39 | ||||||||||
40 | Expected Capital gain yield can also be found as follows: | |||||||||
41 | Expected Capital gain Yield | =(Price after 1 Year - Current Price)/ Current Price | ||||||||
42 | After one Year, | |||||||||
43 | Time to maturity | 8 | Years | |||||||
44 | YTM | 9.69% | ||||||||
45 | Face Value | $1,000 | ||||||||
46 | Annual Coupon | $80.00 | ||||||||
47 | Price of bond | =Present value of all the cash flows | ||||||||
48 | =$80*(P/A,9.69%,8)+$1000*(P/F,9.69%,8) | |||||||||
49 | $908.76 | =D46*PV(D44,D43,-1,0)+D45*(1/((1+D44)^D43)) | ||||||||
50 | ||||||||||
51 | Expected Capital gain Yield | =(Price after 1 Year - Current Price)/ Current Price | ||||||||
52 | =($908.76 - $901.40)/$901.40 | |||||||||
53 | 0.82% | =(908.75-901.4)/901.4 | ||||||||
54 | ||||||||||
55 | Hence Expected capital gain Yield | 0.82% | ||||||||
56 | ||||||||||
57 | c) | |||||||||
58 | Since price of the bond is the present value of cash flows from the bond discounted at interest rate, | |||||||||
59 | therefore, change in interest rate will change the price of the bond. | |||||||||
60 | Thus both the current price and the future price will change. | |||||||||
61 | ||||||||||
62 | Hence the current yield will change and the realized return will differ from the YTM. | |||||||||
63 | Therefore the option (I) is correct. | |||||||||
64 |