Question

In: Statistics and Probability

Assume that X is a random variable with density corresponding to an equal mixture of two...

Assume that X is a random variable with density corresponding to an equal mixture of two Gaussians, with unknown means µ1, µ2 and unknown variances σ1, σ2: p(x) = 0.5N (µ1, σ2 1 ) + 0.5N (µ2, σ2 2 ).

(1) Assume you are given a dataset of n iid samples from this distribution: D = {xi} n i=1. Your goal is to estimate µ1, µ2, σ1 and σ2.

(a) [10 marks] Write down the negative log-likelihood for this problem, for the given dataset D = {xi} n i=1. Simplify as far as you can, by explicitly writing the densities for a Gaussian. Hint: You will not be able to simplify very far, and you will be stuck with a few exponentials that the logs cannot cancel.

(b) [10 marks] Derive update rules to estimate µ1, µ2, σ1, and σ2. More specifically, derive the gradient descent update rule, for the negative log likelihood you provided above.

Solutions

Expert Solution


Related Solutions

Assume that a continuous random variable has a following probability density function: f ( x )...
Assume that a continuous random variable has a following probability density function: f ( x ) = { 1 10 x 4 2 ≤ x ≤ 2.414 0 o t h e r w i s e Use this information and answer questions 3a to 3g. Question a: Which of the following is a valid cumulative density function for the defined region ( 2 ≤ x ≤ 2.414)?    A.F x ( x ) = 1 50 x 5 −...
6. Two continuous random variables X and Y have the joint density that is equal to...
6. Two continuous random variables X and Y have the joint density that is equal to c(x + y) 2 inside the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and vanishes everywhere else. a) Find the value of c b) Find the marginal density fX(x) and use it to determine E(X) and V(X) c) Find the marginal density fY(y) and use it to determine E(Y) and V(Y) d) Find the correlation ρ(X,Y) e) Are X and...
A random variable X has a density given by f X ( x ) = (1...
A random variable X has a density given by f X ( x ) = (1 − x^2 ) [ u ( x ) − u ( x − 1) ] + aδ ( x − 2 )where u(x) is the unit step function and δ(x) is a delta function. a). Find the value of a, E(X) and σ δx^2 . b). Find and make a labeled sketch of FX (x) . C). W = the event {X ≥ 0.5}....
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = x/C , 3 ≤ x ≤ 7, zero elsewhere. Consider Y = g( X ) = 100/(x^2+1). Use cdf approach to find the cdf of Y, FY(y). Hint: F Y ( y ) = P( Y <y ) = P( g( X ) <y ) =
The probability density function of the continuous random variable X is given by fX (x) =...
The probability density function of the continuous random variable X is given by fX (x) = kx, (0 <= x <2) = k (4-x), (2 <= x <4) = 0, (otherwise) 1) Find the value of k 2)Find the mean of m 3)Find the Dispersion σ² 4)Find the value of Cumulative distribution function FX(x)
The probability density function of the random variable X is given by fX(x) = ax +...
The probability density function of the random variable X is given by fX(x) = ax + 2/9 if 1/2 ≤ x ≤ 3, and 0 otherwise. (a) Compute the value of a. (b) Let the random variable Y be defined as Y = [X], where [·] is the “round down” operator (that is, for example, [2.5] = 2, [−2.5] = −3, [−3] = −3). Find the probability mass function of Y . (Hint: For Y to take value k, what...
1. Let X be random variable with density p(x) = x/2 for 0 < x<...
1. Let X be random variable with density p(x) = x/2 for 0 < x < 2 and 0 otherwise. Let Y = X^2−2. a) Compute the CDF and pdf of Y. b) Compute P(Y >0 | X ≤ 1.8).
Let X be a random variable that is equal to the number of times a 5...
Let X be a random variable that is equal to the number of times a 5 is rolled in three rolls of a fair 5-sided die with the integers 1 through 5 on the sides. What is E[X2 ]? What is E2 [X], that is, (E[X])2 ? Justify your answers briefly
[25 pts] The probability density function of a random variable X is fX(x) = ce^ -|x|...
[25 pts] The probability density function of a random variable X is fX(x) = ce^ -|x| for all values of x, where c is a constant. Find the value of c and the cumulative distribution function of X.
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e −x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT