Question

In: Math

Consider the function y = f(x) = 2x3 − 3x2 − 9x − 2. (a) [2]...

Consider the function y = f(x) = 2x3 − 3x2 − 9x − 2.
(a) [2] Specify the (open) intervals on which f(x) is increasing, and the intervals on which f(x) is decreasing.
(b) [2] Specify all local maxima and local minima, giving both x-coordinates and y-coordinates for them.
(c) [2] Specify the intervals on which f(x) is concave up and on which f(x) is concave down.

(d) [2] List the inflection point(s).

(e) [2] Sketch a graph of y = f(x). Make sure that your sketch clearly indicates where the function y = f(x) is increasing, decreasing, concave up, and concave down. Label any maxima, minima, and inflection points. (You may use the following fact: f(x)=0whenx≈−1.3,whenx≈−0.2,andwhenx≈3.1.)

Solutions

Expert Solution



Related Solutions

For which values of x (if any) is f(x) = 2x3 + 3x2 – 12x –...
For which values of x (if any) is f(x) = 2x3 + 3x2 – 12x – 7 Increasing at an increasing rate?
Consider the following function: f (x , y , z ) = x 2 + y...
Consider the following function: f (x , y , z ) = x 2 + y 2 + z 2 − x y − y z + x + z (a) This function has one critical point. Find it. (b) Compute the Hessian of f , and use it to determine whether the critical point is a local man, local min, or neither? (c) Is the critical point a global max, global min, or neither? Justify your answer.
Given f(x)=2x3-7x2+9x-3, use the remainder theorem to find f(-1)
Given f(x)=2x3-7x2+9x-3, use the remainder theorem to find f(-1)
Consider the function, f(x) = - x4 - 2x3 - 8x2 - 5x Use the golden...
Consider the function, f(x) = - x4 - 2x3 - 8x2 - 5x Use the golden section search (xl = -2, xu = 1, εs = 1%)
(6) Consider the function f(x, y) = 9 − x^2 − y^2 restricted to the domain...
(6) Consider the function f(x, y) = 9 − x^2 − y^2 restricted to the domain x^2/9 + y^2 ≤ 1. This function has a single critical point at (0, 0) (a) Using an appropriate parameterization of the boundary of the domain, find the critical points of f(x, y) restricted to the boundary. (b) Using the method of Lagrange Multipliers, find the critical points of f(x, y) restricted to the boundary. (c) Assuming that the critical points you found were...
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does...
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does not equal to 0 3. f'(0)=1 Then: a) Show that f(0)=1. (Hint: use the fact that 0+0=0) b) Show that f(x) does not equal to 0 for all x. (Hint: use y= -x with conditions (1) and (2) above.) c) Use the definition of the derivative to show that f'(x)=f(x) for all real numbers x d) let g(x) satisfy properties (1)-(3) above and let...
Please Consider the function f : R -> R given by f(x, y) = (2 -...
Please Consider the function f : R -> R given by f(x, y) = (2 - y, 2 - x). (a) Prove that f is an isometry. (b) Draw the triangle with vertices A = (1, 2), B = (3, 1), C = (3, 2), and the triangle with vertices f(A), f(B), f(C). (c) Is f a rotation, a translation, or a glide reflection? Explain your answer.
1. For the function f(x)=x2−36 evaluate f(x+h). f(x+h)= 2. Let f(x)=3x+4,g(x)=9x+12, and h(x)= 9x^2+ 24x+16. evaluate...
1. For the function f(x)=x2−36 evaluate f(x+h). f(x+h)= 2. Let f(x)=3x+4,g(x)=9x+12, and h(x)= 9x^2+ 24x+16. evaluate the following: a. (fg)(3)= b. (f/g) (2)= c. (f/g) (0)= d.(fh)(-1)= 3. Let f(x)=2x-1, g(x)=x-3, and h(x) =2x^2-7x+3. write a formula for each of the following functions and then simplify a. (fh) (x)= b. (h/f) (x)= c. (h/g) (x)= 4.Let f(x)=5−x and g(x)=x^3+3 find: a. (f∘g)(0)= b.(g∘f)(0)= c. (f∘g)(x)= d. (g∘f)(x)= 5. Let f(x)=x^2+5x and g(x)=4x+5 find: a. (f∘g)(x)= b. (g∘f)(x)= c. (f∘g)(0)= d....
Consider the function f(x, y) = 4xy − 2x 4 − y 2 . (a) Find...
Consider the function f(x, y) = 4xy − 2x 4 − y 2 . (a) Find the critical points of f. (b) Use the second partials test to classify the critical points. (c) Show that f does not have a global minimum.
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT