In: Chemistry
Consider a solution of 0.0500 M isoleucine. If we call the fully protonated form H2A+, find the pH of a solution of: (a) 0.0500 M H2ACl, (b) 0.0500 M HA, and (c) 0.0500 M NaA. For the intermediate form, HA, calculate the pH using any reasonable approximations.
pKa1 = 2.31
pKa2 = 9.60
Solution :-
Lets calculate the ka from the given pka values
Pka= -log ka
Ka = 10^(-pka)
Ka1= 10^(-2.31)
= 0.0049
Ka2=10^(-9.60)
= 2.51*10^-10
Part a) Calculating the pH for the 0.0500M H2ACl
H2A^+ + H2O ----- > H3O^+ + HA
0.0500 M 0 0
-x +x +x
0.0500-x x x
Ka1=[H3O^+][HA]/[H2A^+]
0.0049 = [x][x]/[0.0500-x]
0.0049*[0.0500-x] = x^2
0.000245 – 0.0049x =x^2
-x^2 – 0.0049x + 0.000245 =0
solving for the x using the quadratic equation we get
x=0.0134 m= [H3O+]
the ka2 is very small therefore we neglect the second dissociation.
pH= -log [H3O^+]
pH= -log[0.0134]
pH= 1.87
part b) calculating the pH of 0.0500 M HA
HA + H2O ---- > H3O^+ + A^-
0.0500 M 0 0
-x +x +x
0.0500-x x x
Ka2=[H3O^+][A^-]/[HA]
2.51*10^-10 = [x][x]/[0.0500-x]
Since the ka is very small therefore we can neglect the x from denominator
2.51*10^-10 = [x][x]/[0.0500]
2.51*10^-10 *0.0500 = x^2
1.26*10^-11 = x^2
Taking square root on both sides we get
3.55*10^-6 = x = [H3O^+]
pH= -log [H3O^+]
pH= -log [3.55*10^-6]
pH= 5.45
part c) Calculating the pH fo 0.0500 M NaA
A^- + H2O ----- > HA + OH^-
0.0500 0 0
-x +x +x
0.0500-x x x
Kb =[HA][OH^-]/[A^-]
Kb= kw/ka2
Kb= 1*10^-14 / 2.51*10^-10
= 3.98*10^-5
3.98*10^-5 = [x][x]/[0.0500-x]
Neglect x from denominator
3.98*10^-5 = x^2/ 0.0500
3.98*10^-5 * 0.0500 = x^2
1.99*10^-6 = x^2
Taking square root on both sides
1.41*10^-3 = x =[OH^-]
pOH= -log [OH^-]
pOH= -log[1.41*10^-3]
pOH= 2.85
pH = 14- pOH
pH= 14 – 2.85
pH= 11.15