Question

In: Statistics and Probability

A simple random sample of 60 items resulted in a sample mean of 90. The population...

A simple random sample of 60 items resulted in a sample mean of 90. The population standard deviation is σ = 17.

a. Compute the 95% confidence interval for the population mean. Round your answers to one decimal place.

b. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean. Round your answers to two decimal places

Solutions

Expert Solution

Solution :

a) The 95% confidence interval for population mean is given as follows:

Where, x̄ is sample mean, σ is population standard deviation and Z(0.05/2) is critical z-value to construct 95% confidence interval.

We have, x̄ = 90,  σ = 17 and n = 60

Using Z-table we get, Z(0.05/2) = 1.96

Hence, 95% confidence interval for population mean is,

The 95% confidence interval for population mean is,

(85.7, 94.3)

b) The 95% confidence interval for population mean is given as follows:

Where, x̄ is sample mean, σ is population standard deviation and Z(0.05/2) is critical z-value to construct 95% confidence interval.

We have, x̄ = 90,  σ = 17 and n = 120

Using Z-table we get, Z(0.05/2) = 1.96

Hence, 95% confidence interval for population mean is,

The 95% confidence interval for population mean is,

(86.96, 93.04)

Please rate the answer. Thank you.


Related Solutions

A simple random sample of 60 items resulted in a sample mean of 90. The population...
A simple random sample of 60 items resulted in a sample mean of 90. The population standard deviation is 12. a. Compute the 95% confidence interval for the population mean (to 1 decimal). ( ? , ? ) b. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean (to 2 decimals). ( ? , ? )
A simple random sample of 90 items resulted in a sample mean of 60. The population...
A simple random sample of 90 items resulted in a sample mean of 60. The population standard deviation is σ = 10. (a) Compute the 95% confidence interval for the population mean. (Round your answers to two decimal places.) ______ to ________ (b) Assume that the same sample mean was obtained from a sample of 180 items. Provide a 95% confidence interval for the population mean. (Round your answers to two decimal places.) ______ to _______
A simple random sample of 60 items resulted in a sample mean of 90. The population...
A simple random sample of 60 items resulted in a sample mean of 90. The population standard deviation is σ = 10. (a) Compute the 95% confidence interval for the population mean. (Round your answers to two decimal places.) (b) Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean. (Round your answers to two decimal places.)
A simple random sample of 70 items resulted in a sample mean of 90. The population...
A simple random sample of 70 items resulted in a sample mean of 90. The population standard deviation is σ = 15. A. Compute the 95% confidence interval for the population mean. (Round your answers to two decimal places.) B. Assume that the same sample mean was obtained from a sample of 140 items. Provide a 95% confidence interval for the population mean. (Round your answers to two decimal places.)
A simple random sample of 70 items resulted in a sample mean of 90. The population...
A simple random sample of 70 items resulted in a sample mean of 90. The population standard deviation is σ = 5. (a) Compute the 95% confidence interval for the population mean. (Round your answers to two decimal places.) to (b) Assume that the same sample mean was obtained from a sample of 140 items. Provide a 95% confidence interval for the population mean. (Round your answers to two decimal places.) to (c) What is the effect of a larger...
A simple random sample of 70 items resulted in a sample mean of 60. The population...
A simple random sample of 70 items resulted in a sample mean of 60. The population standard deviation is σ = 15. (a) Compute the 95% confidence interval for the population mean. (Round your answers to two decimal places.) _________ to _________ (b) Assume that the same sample mean was obtained from a sample of 140 items. Provide a 95% confidence interval for the population mean. (Round your answers to two decimal places.) _________ to _________ (c) What is the...
A simple random sample of 60 items resulted in a sample mean of 80. The population...
A simple random sample of 60 items resulted in a sample mean of 80. The population standard deviation is σ = 5. (a) Compute the 95% confidence interval for the population mean. (Round your answers to two decimal places.)   to   (b) Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean. (Round your answers to two decimal places.)   to  
A simple random sample of 60 items resulted in a sample mean of 80. The population...
A simple random sample of 60 items resulted in a sample mean of 80. The population standard deviation is σ = 5. (a) Compute the 95% confidence interval for the population mean. (Round your answers to two decimal places.)   to   (b) Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean. (Round your answers to two decimal places.)   to  
A simple random sample of 60 items resulted in a sample mean of 65. The population...
A simple random sample of 60 items resulted in a sample mean of 65. The population standard deviation is 16. a. Compute the 95% confidence interval for the population mean (to 1 decimal). ( , ) b. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean (to 2 decimals). ( , ) c. What is the effect of a larger sample size on the margin of...
A simple random sample of 60 items resulted in a sample mean of 65. The population...
A simple random sample of 60 items resulted in a sample mean of 65. The population standard deviation is 16. a. Compute the 95% confidence interval for the population mean (to 1 decimal). ( , ) b. Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean (to 2 decimals). ( , ) c. What is the effect of a larger sample size on the margin of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT