Question

In: Statistics and Probability

Case Problem 1: Stock Market a. Using the dataset “Stock Market”, build a table with the...

Case Problem 1: Stock Market a. Using the dataset “Stock Market”, build a table with the descriptive statistics (N, Mean, Standard Deviation, Minimum, Median and Maximum) (10 points) • Which companies had a higher mean monthly return than the market (as measured by the S&P 500)? (5 points) • Which one was the most volatile (has the largest standard deviation)? Why is the S&P Index the less volatile? (5 points) b. Find the estimated regression equation relating each of the individual stocks to the S&P 500 and the value of R-Sq for each equation. (25 points) c. Find the betas (slope of estimated regression equation) for the individual stocks from the regression output. (10 points) • What does a stock with a beta greater than 1 indicate? And less than 1? What is the stock that benefits most from a rising market? Why? (25 points) d. What dp the R-Sq values indicate? (20 points)

Month Microsoft Exxon Mobil Caterpillar Johnson & Johnson McDonald's Sandisk Qualcomm Procter & Gamble S&P 500
Jan-03 0,21799 0,27739 0,2696 0,29814 0,18557 0,05133 0,3349 0,300465 0,272585
Feb-03 0,30211 0,30293 0,36867 0,28219 0,25576 0,39363 0,21822 0,256644 0,282996
Mar-03 0,32152 0,32734 0,34681 0,40334 0,36245 0,30839 0,34251 0,387833 0,308358
Apr-03 0,35576 0,30715 0,37622 0,27391 0,48257 0,73876 0,18556 0,313588 0,381044
May-03 0,26283 0,34119 0,29144 0,26859 0,39532 0,80165 0,35395 0,321925 0,350899
Jun-03 0,34185 0,28654 0,36731 0,25124 0,47779 0,4164 0,37124 0,271248 0,311322
Jul-03 0,33003 0,29081 0,51847 0,30174 0,34306 0,69734 0,34285 0,290413 0,316224
Aug-03 0,30417 0,36661 0,36462 0,26196 0,27436 0,36633 0,40459 0,293399 0,317873
Sep-03 0,34827 0,27082 0,25837 0,29879 0,34996 0,35409 0,30823 0,363352 0,288056
Oct-03 0,24604 0,29945 0,36987 0,31636 0,36202 0,56491 0,43967 0,363833 0,354962
Nov-03 0,28355 0,29645 0,3378 0,2843 0,3412 0,30273 0,23957 0,279143 0,307129
Dec-03 0,36457 0,4326 0,39165 0,34787 0,26879 0,05724 0,51055 0,337822 0,350765
Jan-04 0,31023 0,29488 0,24556 0,33407 0,33665 0,18725 0,38678 0,31657 0,317276
Feb-04 0,25949 0,33996 0,26954 0,31367 0,39946 0,23628 0,37763 0,314147 0,312209
Mar-04 0,23969 0,28625 0,34383 0,24083 0,30954 0,41566 0,35072 0,32312 0,283641
Apr-04 0,34813 0,32308 0,28773 0,36526 0,2531 0,11629 0,24222 0,313063 0,283209
May-04 0,30383 0,3228 0,26938 0,33637 0,26952 0,36479 0,37541 0,319574 0,312083
Jun-04 0,38883 0,32682 0,35428 0,29982 0,28485 0,17992 0,38812 0,309831 0,317989
Jul-04 0,29755 0,34256 0,23026 0,29228 0,35769 0,42125 0,24834 0,262528 0,265709
Aug-04 0,26104 0,30151 0,28925 0,35636 0,28255 0,26012 0,40157 0,37325 0,302287
Sep-04 0,31282 0,34837 0,4066 0,26954 0,33738 0,54711 0,32602 0,266947 0,309364
Oct-04 0,31157 0,31842 0,30622 0,33639 0,33996 0,01669 0,36557 0,250296 0,314014
Nov-04 0,36864 0,34673 0,4367 0,33811 0,37341 0,38194 0,30048 0,344939 0,338595
Dec-04 0,29664 0,3002 0,3651 0,35139 0,34294 0,40585 0,32042 0,329918 0,332458
Jan-05 0,28353 0,30663 0,21796 0,32018 0,31029 0,28919 0,1783 0,270951 0,27471
Feb-05 0,26043 0,53217 0,36678 0,31832 0,3213 0,38826 0,26992 0,29737 0,318903
Mar-05 0,26065 0,2414 0,26202 0,32378 0,24135 0,33423 0,31609 0,298305 0,280882
Apr-05 0,34675 0,25688 0,26741 0,32189 0,24123 0,15252 0,2525 0,326981 0,279891
May-05 0,32292 0,29053 0,36882 0,28251 0,35561 0,39578 0,37079 0,318467 0,329952
Jun-05 0,26279 0,3226 0,31275 0,2687 0,1969 0,21375 0,1857 0,256482 0,299857
Jul-05 0,331 0,32227 0,4365 0,284 0,42324 0,7252 0,496 0,359905 0,335968
Aug-05 0,37224 0,32451 0,32931 0,29625 0,34107 0,44814 0,30811 0,297304 0,288778
Sep-05 0,23974 0,36077 0,35875 0,29826 0,33205 0,54234 0,42692 0,371738 0,306949
Oct-05 0,29883 0,18354 0,1994 0,28957 0,24357 0,52056 0,18849 0,246351 0,282259
Nov-05 0,38016 0,33883 0,39869 0,29138 0,3924 0,16719 0,44361 0,321432 0,335186
Dec-05 0,24473 0,26795 0,29983 0,27328 0,29616 0,53032 0,24942 0,312065 0,299048

Solutions

Expert Solution

Using the dataset “Stock Market”, build a table with the descriptive statistics (N, Mean, Standard Deviation, Minimum, Median and Maximum) (10 points) • Which companies had a higher mean monthly return than the market (as measured by the S&P 500)? (5 points) • Which one was the most volatile (has the largest standard deviation)? Why is the S&P Index the less volatile? (5 points)

The following steps show how to create the descriptive statistics.


Step 1 : Put the data in excel as shown.


Step 2 : go to DATA -> data analysis -> Descriptive Statistics


Step 3 : Input the values as shown.


Step 4 : The output will be generated as follows.


The needed statistics are highlighted in yellow.

Inorder to compare and answer the following questions, I have put the statistics in a easy to understand manner.


Which companies had a higher mean monthly return than the market (as measured by the S&P 500)?

Sandisk = Mean = 0.3693

Which one was the most volatile (has the largest standard deviation)?
Sandisk: Std.Dev = 0.1954

Why is the S&P Index the less volatile?
The index is made up of many stocks, hence the standard deviation of all the stock get averaged out and the index tends to be less volatile.

b. Find the estimated regression equation relating each of the individual stocks to the S&P 500 and the value of R-Sq for each equation. (25 points) c. Find the betas (slope of estimated regression equation) for the individual stocks from the regression output. (10 points) • What does a stock with a beta greater than 1 indicate? And less than 1? What is the stock that benefits most from a rising market? Why? (25 points) d. What dp the R-Sq values indicate? (20 points)
.
The following steps are given to find the regression equation for Microsoft
Step 1 : Put the data in excel as shown.


Step 2 : go to DATA -> data analysis -> regression


Step 3 : Input the values as shown.


Step 4 : The output will be generated as follows.

The coefficient that are used in the regression are highlighted in yellow and the regression equation is highlighted in green.

Similarly we find the regression for the other stocks. The final output and the regression equation along with the beta and rsquare is given.

Exxon Mobil


Caterpillar


Johnson & Johnson


McDonald's


Sandisk


Qualcomm


Procter & Gamble

The summary of the all the stocks is shown below.

What does a stock with a beta greater than 1 indicate? And less than 1?
A beta indicates how volatite a stock is . If it is greater than 1, indicating it has greater volatility than the stock index (S&P Index in this case)
If it is less than 1, indicating it has less volatility than the stock index

What is the stock that benefits most from a rising market? Why? (25 points)
Sandisk because it has a beta value of 2.60, indicating that if the stock index moves up, Scandisk will move 2.6 times more compared to the stock index.

What does the R-Sq values indicate?
It is the measure of the amount of variability in y explained by x. Its value lies between 0 and 1. Greater the value, better is the model.
In this case, the square helps us understand how much of the variability in the stock is explained by the S&P Index.


Related Solutions

This is a maching learning question. Using the Kaggle diamonds dataset, build a KNN based estimator...
This is a maching learning question. Using the Kaggle diamonds dataset, build a KNN based estimator for estimating the price of a diamond and propose an appropriate K value. Please use python and google colab format. Thank you!
The accompanying table gives the stock market indices for a certain company on the stock market....
The accompanying table gives the stock market indices for a certain company on the stock market. Use simple linear regression to forecast the data. Date   Index   Date (numeric) 9/3/2010   10,446.78   40424 9/7/2010   10,340.24   40428 9/8/2010   10,387.43   40429 9/9/2010   10,416.96   40430 9/10/2010   10,462.14   40431 9/13/2010   10,545.67   40434 9/14/2010   10,525.62   40435 9/15/2010   10,572.66   40436 9/16/2010   10,593.78   40437 9/17/2010   10,606.94   40438 9/20/2010   10,752.82   40441 9/21/2010   10,760.77   40442 9/22/2010   10,740.59   40443 9/23/2010   10,663.99   40444 9/24/2010   10,861.13   40445 9/27/2010   10,812.19   40448 9/28/2010   10,858.73   40449 9/29/2010  ...
Illustrate a long stock and long call position with example. Build a table and diagram to...
Illustrate a long stock and long call position with example. Build a table and diagram to relate your explanation. (10 marks)
Using the mtcars dataset, answer the following questions: Fill in the following table: Variable Correlation with...
Using the mtcars dataset, answer the following questions: Fill in the following table: Variable Correlation with mpg cyl -0.85216 disp -0.84755 hp -0.77617 drat 0.681172 wt -0.86766 qsec 0.418684 vs 0.664039 am 0.599832 gear 0.480285 carb -0.55093 mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4 Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108...
Problem 1. Using the INVOICE table structure shown in table below do the following: INVOICE Attribute...
Problem 1. Using the INVOICE table structure shown in table below do the following: INVOICE Attribute Name Sample Value Sample Value Sample Value Sample Value Sample Value INV_NUM 211347 211347 211347 211348 211349 PROD_NUM AA-E3422QW QD-300932X RU-995748G AA-E3422QW GH-778345P SALE_DATE 15-Jan-2016 15-Jan-2016 15-Jan-2016 15-Jan-2016 16-Jan-2016 PROD_LABEL Rotary sander 0.25-in. drill bit Band saw Rotary sander Power drill VEND_CODE 211 211 309 211 157 VEND_NAME NeverFail, Inc. NeverFail, Inc. BeGood, Inc. NeverFail, Inc. ToughGo, Inc. QUANT_SOLD 1 8 1 2 1...
ANSWER USING R CODE Using the dataset 'LakeHuron' which is a built in R dataset describing...
ANSWER USING R CODE Using the dataset 'LakeHuron' which is a built in R dataset describing the level in feet of Lake Huron from 1872- 1972. To assign the values into an ordinary vector,x, we can do the following 'x <- as.vector(LakeHuron)'. From there, we can access the data easily. Assume the values in X are a random sample from a normal population with distribution X. Also assume the X has an unknown mean and unknown standard deviation. With this...
To find the dataset needed for this problem, you’ll first need to open the “swiss” dataset...
To find the dataset needed for this problem, you’ll first need to open the “swiss” dataset that is contained in R by running the following line: > data('swiss') Now you can rename the “swiss” dataset and use it to answer the question below. Name the data frame with your UT EID:                         > my_variable <- swiss This dataset contains socio-economic indicators for the French-speaking provinces of Switzerland in the year 1888. Among the variables, “Agriculture” is the percentage of the...
Build the analysis of variance table for the following 2k factorial using a) Yates Method b)...
Build the analysis of variance table for the following 2k factorial using a) Yates Method b) standard computational formulas c) software (Minitab) with steps A completely randomized experiment is run to determine the influence of three factors, A, B, and C, in a plant on the ppm of a particular byproduct. Each of the three factors are considered at two levels. Analyze according to the instructions above. A1 A2 B1 B2 B1 B2 C1 C2 C1 C2 C1 C2 C1...
For this problem, use the e1-p1.csv dataset. Using the decision tree algorithm that we discussed in...
For this problem, use the e1-p1.csv dataset. Using the decision tree algorithm that we discussed in the class, determine which attribute is the best attribute at the root level. You should not use Weka, JMP Pro, or any other data mining/machine learning software. You must show all intermediate results and calculations. For this problem, use the e1-p1.csv dataset. Using the decision tree algorithm that we discussed in the class, determine which attribute is the best attribute at the root level....
Problem Statement: 1: Using a pivot table, show in an appropriate chart the total number of...
Problem Statement: 1: Using a pivot table, show in an appropriate chart the total number of confirmed voters by percentage and by age group in the United States 2: What conclusions do you draw from the study and chart? State Age Total Population Citizen Population Registered Voters Confirmed Voters Alabama 18 to 24 439000 428000 212000 155000 Alabama 25 to 34 576000 535000 359000 271000 Alabama 35 to 44 615000 582000 410000 330000 Alabama 45 to 64 1297000 1275000 1051000...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT