In: Statistics and Probability
Build the analysis of variance table for the following 2k factorial using
a) Yates Method
b) standard computational formulas
c) software (Minitab) with steps
A completely randomized experiment is run to determine the influence of three factors, A, B, and C, in a plant on the ppm of a particular byproduct. Each of the three factors are considered at two levels. Analyze according to the instructions above.
A1 |
A2 |
||||||
B1 |
B2 |
B1 |
B2 |
||||
C1 |
C2 |
C1 |
C2 |
C1 |
C2 |
C1 |
C2 |
1595 |
1745 |
1835 |
1838 |
1573 |
2184 |
1700 |
1717 |
1578 |
1689 |
1823 |
1614 |
1592 |
1538 |
1815 |
1806 |
Step 1:
Step 2:
Put Number of factors:=3,
Insert the data and analyze the design
MINITAB OUTPUT:
General Factorial Regression: Response versus A, B, C
Factor Information
Factor Levels Values
A 2 0, 1
B 2 0, 1
C 2 0, 1
Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Model 7 141531 20218.7 0.66 0.704
Linear 3 53063 17687.7 0.57 0.648
A 1 2783 2782.6 0.09 0.771
B 1 26488 26487.6 0.86 0.381
C 1 23793 23793.1 0.77 0.405
2-Way Interactions 3 88078 29359.2 0.95 0.460
A*B 1 7877 7876.6 0.26 0.627
A*C 1 16066 16065.6 0.52 0.491
B*C 1 64136 64135.6 2.08 0.187
3-Way Interactions 1 390 390.1 0.01 0.913
A*B*C 1 390 390.1 0.01 0.913
Error 8 246345 30793.2
Total 15 387876
Model Summary
S R-sq R-sq(adj) R-sq(pred)
175.480 36.49% 0.00% 0.00%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 1727.8 43.9 39.38 0.000
A
0 -13.2 43.9 -0.30 0.771 1.00
B
0 -40.7 43.9 -0.93 0.381 1.00
C
0 -38.6 43.9 -0.88 0.405 1.00
A*B
0 0 -22.2 43.9 -0.51 0.627 1.00
A*C
0 0 31.7 43.9 0.72 0.491 1.00
B*C
0 0 -63.3 43.9 -1.44 0.187 1.00
A*B*C
0 0 0 4.9 43.9 0.11 0.913 1.00
Regression Equation
Response = 1727.8 - 13.2 A_0 + 13.2 A_1 - 40.7 B_0 + 40.7 B_1 -
38.6 C_0 + 38.6 C_1
- 22.2 A*B_0 0 + 22.2 A*B_0 1 + 22.2 A*B_1 0 - 22.2 A*B_1 1 + 31.7
A*C_0 0
- 31.7 A*C_0 1 - 31.7 A*C_1 0 + 31.7 A*C_1 1 - 63.3 B*C_0 0 + 63.3
B*C_0 1
+ 63.3 B*C_1 0 - 63.3 B*C_1 1 + 4.9 A*B*C_0 0 0 - 4.9 A*B*C_0 0 1 -
4.9 A*B*C_0 1
0 + 4.9 A*B*C_0 1 1 - 4.9 A*B*C_1 0 0 + 4.9 A*B*C_1 0 1 + 4.9
A*B*C_1 1 0
- 4.9 A*B*C_1 1 1
Fits and Diagnostics for Unusual Observations
Obs Response Fit Resid Std Resid
12 2184 1861 323 2.60 R
14 1538 1861 -323 -2.60 R
Conclusion:
Since the p values for all the main as well as interation factors are greater than 0.05 so we can conclude that none of the factor have significant effect on the response.