In: Finance
Vandalay Industries is considering the purchase of a new machine for the production of latex. Machine A costs $3,090,000 and will last for six years. Variable costs are 35 percent of sales, and fixed costs are $230,000 per year. Machine B costs $5,292,000 and will last for nine years. Variable costs for this machine are 30 percent of sales and fixed costs are $165,000 per year. The sales for each machine will be $10.8 million per year. The required return is 10 percent, and the tax rate is 35 percent. Both machines will be depreciated on a straight-line basis. The company plans to replace the machine when it wears out on a perpetual basis. Calculate the EAC for each machine.
Step 1 : Identification of Alternatives
Alternative 1 : Machine A
Alternative 2 : Machine B
Step 2 : Calculation of Net Present Value of Machine A
NPV = Present value of cash inflows - Present value of cash outflows
1. Calculation of Cash Outflows:
Particulars | Amount |
Cost of Machinery | ($3,090,000.00) |
2. Calculation of Cash Inflows per year
Particulars | Amount |
Sales | $10,800,000.00 |
Less : Variable Cost ($10.8 million x 35%) |
$(3,780,000.00) |
Contribution | $7,020,000.00 |
Less: Fixed Cost | $(230,000.00) |
Less: Depreciation (Note 1) | $(515,000.00) |
Earnings before tax | $6,275,000.00 |
Less: Tax @ 35% | $(2,196,250.00) |
Earnings after tax | $4,078,750.00 |
Add: Depreciation | $515,000.00 |
Future Cash Inflows | $4,593,750.00 |
Note 1 : Calculation of Depreciation
Cost of Machinery (A) | $3,090,000.00 |
Life (B) | 6 years |
Depreciation per year as per SLM (A) /(B) | $515,000.00 |
3. Calculation of NPV at required rate of return 10%
Particulars | Amount | Period | PVF @10% | Present Value |
Cash outflows | ||||
Cost of Machinery | ($3,090,000.00) | 0 | 1 | ($3,090,000.00) |
Cash Inflows | ||||
Future Cash Inflows | $4,593,750.00 | 1-6 | 4.355260699 | $20,006,978.84 |
NPV | $16,916,978.84 |
NPV of Machine A = $16,916,978.84
Step 3 : Calculation of Net Present Value of Machine B
1. Calculation of Cash Outflows:
Particulars | Amount |
Cost of Machinery | ($5,292,000.00) |
2. Calculation of Cash Inflows per year
Particulars | Amount |
Sales | $10,800,000.00 |
Less : Variable Cost ($10.8 million x 30%) | $(3,240,000.00) |
Contribution | $7,560,000.00 |
Less: Fixed Cost | $(165,000.00) |
Less: Depreciation (Note 1) | $(588,000.00) |
Earnings before tax | $6,807,000.00 |
Less: Tax @ 35% | $(2,382,450.00) |
Earnings after tax | $4,424,550.00 |
Add: Depreciation | $588,000.00 |
Future Cash Inflows | $5,012,550.00 |
Note 1 : Calculation of Depreciation
Cost of Machinery (A) | $5,292,000.00 |
Life (B) | 9 years |
Depreciation per year as per SLM (A) /(B) | $588,000.00 |
3. Calculation of NPV at required rate of return 10%
Particulars | Amount | Period | PVF @10% | Present Value |
Cash outflows | ||||
Cost of Machinery | ($5,292,000.00) | 0 | 1 | ($5,292,000.00) |
Cash Inflows | ||||
Future Cash Inflows | $5,012,550.00 | 1-9 | 5.759023816 | $28,867,394.83 |
NPV | $23,575,394.83 |
NPV of Machine B = $23,575,394.83
Step 4 : Calculation Of EAC
Equivalent Annual Cost (EAC) = NPV / PVAF(r, t)
Particulars | Machine A | Machine B |
NPV | $16,916,978.84 | $23,575,394.83 |
Life | 6 years | 9 years |
PVAF @10% | 4.355260699 | 5.759023816 |
EAC | $3,884,263.19 | $4,093,644.27 |
Note :
PVAF(r, t) = (1/1+r)^1 + (1/1+r)^2 + ....+ (1/1+r)^n
Where r = required rate of return
t = Time period