Question

In: Chemistry

Assume a 0.286 M solution of NaCl and a nonelectrolyte with an isosmotic molar concentration of...

Assume a 0.286 M solution of NaCl and a nonelectrolyte with an isosmotic molar concentration of 0.416. Determine the isosmotic coefficient and the osmotic pressure of this solution.

Solutions

Expert Solution


Related Solutions

Calculate the concentration in osmolarity of a solution prepared by adding 5.00 g NaCl (molar mass...
Calculate the concentration in osmolarity of a solution prepared by adding 5.00 g NaCl (molar mass = 58.44) to a 100 mL volumetric flask, filling the flask to the mark with distilled water, and mixing.
What is the molar concentration of a lead nitrate solution that is 18.0% (m/m) by mass...
What is the molar concentration of a lead nitrate solution that is 18.0% (m/m) by mass lead nitrate. Molar Mass[Pb(NO3)2] = 331.22 g/mol; Density[Pb(NO3)2] = 1.18 g/mL.
The molar concentration of a 20.0% 9m/m) solution of aqueous ammonia (NH3) is 10.51 M. What...
The molar concentration of a 20.0% 9m/m) solution of aqueous ammonia (NH3) is 10.51 M. What is the density of this solution ?
Calculate the molar concentration of OH− ions in an 1.37 M solution of hypobromite ion (BrO−;...
Calculate the molar concentration of OH− ions in an 1.37 M solution of hypobromite ion (BrO−; Kb = 4.0 10-6). M What is the pH of this solution?
A 0.380 m aqueous solution of NaCl is prepared at 20.0∘C. Assume that the density of...
A 0.380 m aqueous solution of NaCl is prepared at 20.0∘C. Assume that the density of the solution at 20.0∘C is 1.082 g/mL. Calculate the molarity of the salt solution.
Part A Calculate the molar concentration of OH− ions in a 8.1×10−2 M solution of ethylamine...
Part A Calculate the molar concentration of OH− ions in a 8.1×10−2 M solution of ethylamine (C2H5NH2)(Kb=6.4×10−4). Express your answer using two significant figures. [OH−] = M Part B Calculate the pH of this solution. Express your answer using two decimal places.
Part A Calculate the molar concentration of OH− ions in a 7.4×10−2 M solution of ethylamine...
Part A Calculate the molar concentration of OH− ions in a 7.4×10−2 M solution of ethylamine (C2H5NH2)(Kb=6.4×10−4). Express your answer using two significant figures. [OH−] =   M   SubmitMy AnswersGive Up Part B Calculate the pH of this solution. Express your answer using two decimal places. pH = SubmitMy AnswersGive Up
Which solution has the highest concentration of NaCl? A. 175 g NaCl in 1.0 L B....
Which solution has the highest concentration of NaCl? A. 175 g NaCl in 1.0 L B. 58.5 g NaCl in 1.5 L C. 29.3 g NaCl in 0.5 L D. 2.5 mol NaCl in 2.0 L E. 5.0 mol NaCl in 3.0 L
AgNO3(aq) + NaCl(aq) → AgCl(s) + NaNO3(aq) The concentration of NaCl is 0.118 M at the...
AgNO3(aq) + NaCl(aq) → AgCl(s) + NaNO3(aq) The concentration of NaCl is 0.118 M at the start of the reaction, and 0.0900 M after 118 seconds. The initial concentrations of the products are zero. The average rate of reaction (in M/min) over this time period- 1.42×10-2 M/min What is the average rate of change (in M/min) of NaCl in the first 118 seconds and what is the average rate of change (in M/min) of NaNO3 in the first 118 seconds?...
Solution A (1.0 M Sucrose) and solution B (1.0 M NaCl) are separated by a dialysis...
Solution A (1.0 M Sucrose) and solution B (1.0 M NaCl) are separated by a dialysis membrane. If the membrane is spontaneously permeable to Sucrose, NaCl, and Water, what is the INITIAL reaction of Sucrose, NaCl, and Water?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT