In: Chemistry
Predict the vibrational contribution to the standard molar entropy of methanoic acid (formic acid, HCOOH) vapour at (i) 298 K (ii) 500 K. The normal modes occur at wavenumbers 3570, 2943, 1770, 1387, 1229, 1105, 625, 1033, 638 cm-1.
the vibrational contribution to the standard molar entropy of methanoic acid :
For this first , we calculate Vibrational partition function at given temperature :
at 298 K
Vibrational partition function , qv
T = 298 K
h0/kT = hcv/kT
For each vibrational frequency :
1. 3570 cm-1
hcv/kT = 6.626*10^-34 J-s * 3*10^10 cm/s * 3570 cm-1 / 1.38*10^-23 J/K *298 K = 17.25
qv = 1/ (1- exp(-h0/kT)) = 1 / (1- exp(-17.25)) = 1.000
2. 2943
hcv/kT = 6.626*10^-34 J-s * 3*10^10 cm/s * 2943 cm-1 / 1.38*10^-23 J/K *298 K = 14.22
qv = 1/ (1- exp(-h0/kT)) = 1 / (1- exp(-14.22)) = 1.000
3. 1770
6.626*10^-34 J-s * 3*10^10 cm/s * 1770 cm-1 / 1.38*10^-23 J/K *298 K = 8.55
qv = 1/ (1- exp(-h0/kT)) = 1 / (1- exp(-8.55)) = 1.000
4. 1387
qv = 1/ (1- exp(-h0/kT)) = 1 / (1- exp(-6.7)) = 1.001
5. 1229
qv = 1/ (1- exp(-h0/kT)) = 1 / (1- exp(-5.94)) = 1.003
6. 1105
qv = 1/ (1- exp(-h0/kT)) = 1 / (1- exp(-5.33)) = 1.005
7. 625
qv = 1/ (1- exp(-h0/kT)) = 1 / (1- exp(-3.02)) = 1.051
8.1033
qv = 1/ (1- exp(-h0/kT)) = 1 / (1- exp(-4.99)) = 1.007
9. 638 cm-1
qv = 1/ (1- exp(-h0/kT)) = 1 / (1- exp(-3.08)) = 1.048
Overall qv = 1.000*1.000*1.000*1.001*1.003*1.005*1.051*1.007*1.048 = 1.119
Similarly :
at 500 K
1. 3570 cm-1
hcv/kT = 6.626*10^-34 J-s * 3*10^10 cm/s * 3570 cm-1 / 1.38*10^-23 J/K *500 K = 10.28
qv = 1/ (1- exp(-h0/kT)) = 1 / (1- exp(-10.28)) = 1.000
at 2943 : 1.000 , 1770 : 1.015, 1387: 1.037, 1229 : 1.056, 1105 : 1.076 , 625 : 1.289 , 1033 : 1.092 , 638 : 1.277.
Overall qv = 1.000*1.000*1.015*1.037*1.056*1.076*1.289*1.092*1.277 = 2.15
From generalized equation :
Vibrational contribution to standard Molar entropy :
Sv = R ln qv
standard molar entropy of methanoic acid (formic acid, HCOOH) vapour
at (i) 298 K : Sv = R ln 1.119 = 0.935 J/K-mol
(ii) 500 K. :Sv = R ln 2.15 = 6.364 J/K-mol