Question

In: Statistics and Probability

Let X be the sum of rolling 2 dice. a) Plot the CDF and PMF of...

Let X be the sum of rolling 2 dice.

a) Plot the CDF and PMF of X.

b) Determine P(5 < X <=8 | x<=10)

c) Determine the median, mean and variance of X

d) Bonus: Compute the correlation between X and Y = the number on the first dice.

Solutions

Expert Solution


Related Solutions

Roll two ordinary dice and let X be their sum. Draw the pmf and cmf for...
Roll two ordinary dice and let X be their sum. Draw the pmf and cmf for X. Compute the mean and standard deviation of X. Solve using R studio coding.
Let X be the random variable for the sum obtained by rolling two fair dice. (1)...
Let X be the random variable for the sum obtained by rolling two fair dice. (1) What is the probability density function? (2) What is the cumulative probability density function? (3) What is the expected value? (4) What is the variance?
2. Three fair dice are rolled. Let X be the sum of the 3 dice. (a)...
2. Three fair dice are rolled. Let X be the sum of the 3 dice. (a) What is the range of values that X can have? (b) Find the probabilities of the values occuring in part (a); that is, P(X = k) for each k in part (a). (Make a table.) 3. Let X denote the difference between the number of heads and the number of tails obtained when a coin is tossed n times. (a) What are the possible...
. Dice rolling: In c++Write a program that simulates the rolling of two dice. The sum...
. Dice rolling: In c++Write a program that simulates the rolling of two dice. The sum of the two values should then be calculated. [Note: Each die can show an integer value from 1 to 6, so the sum of the two values will vary from 2 to 12, with 7 being the most frequent sum and 2 and 12 being the least frequent sums.] The following table shows the 36 possible combinations of the two dice. Your program should...
Consider a random experiment of rolling 2 dice. What is probability of rolling a sum larger...
Consider a random experiment of rolling 2 dice. What is probability of rolling a sum larger than 9? Select the best answer. A. 0.5 B. 0.1667 C. 0.2333 D. None of the above
Take 3 dice and throw these dice 30 times. Let X be the sum of the...
Take 3 dice and throw these dice 30 times. Let X be the sum of the number of dots on upper faces of the dice. Obtain probability distribution of X. Also find mean and variance.
1. Three six-sided dice are rolled. Let X be the sum of the dice. Determine the...
1. Three six-sided dice are rolled. Let X be the sum of the dice. Determine the range of X and compute P(X = 18) and P(X ≤ 4). 2. An urn contains 5 red balls and 3 green balls. (a) Draw 3 balls with replacement. Let X be the number of red balls drawn. Determine the range of X and compute P(X = 3) and P(X 6= 1). (b) Draw 3 balls without replacement. Let Y be the number of...
Let X be the outcome of rolling a fair six-sided dice. The possible outcomes or X...
Let X be the outcome of rolling a fair six-sided dice. The possible outcomes or X are 1,2,3,4,5 and 6 and all are equally likely. What is the cumulative distribution function F(x)?
Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3 random variables...
Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3 random variables following (1) binomial distribution [p,n], (2) a geometric distribution [p], and (3) Poisson distribution [?]. You have to consider two sets of parameters per distribution which can be chosen arbitrarily. The following steps can be followed: Setp1: Establish two sets of parameters of the distribution: For Geometric and Poisson distributions take two values of p (p1 and p2) and take two values of [?],...
Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3 random variables...
Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3 random variables following (1) binomial distribution [p,n], (2) a geometric distribution [p], and (3) Poisson distribution [?]. You have to consider two sets of parameters per distribution which can be chosen arbitrarily. The following steps can be followed
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT