Question

In: Statistics and Probability

Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3 random variables...

Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3 random variables following (1) binomial distribution [p,n], (2) a geometric distribution [p], and (3) Poisson distribution [?]. You have to consider two sets of parameters per distribution which can be chosen arbitrarily. The following steps can be followed

Solutions

Expert Solution

ANSWER:

R-code is given below

#Function to generate graphs for binomial(n,p)

bin=function(p,n)
{
pmf=array(0)
cdf=array(0)

#Calculating the pmf and cdf of the distribution

for(i in 0:n)
{
    pmf[i]=dbinom(i,n,p)
    cdf[i]=pbinom(i,n,p)
}

#PLotting the pmf and the cdf

par(mfrow=c(1,2))
plot(cdf,type="S",xlab="Support",ylab="cdf",main="Plot of cdf")
plot(pmf,type="h",xlab="Support",ylab="pmf",main="Plot of pmf")
}

#Calling the function

bin(0.5,10)
bin(0.8,20)

#Function to generate graphs for geom(p)

geo=function(p)
{
pmf=array(0)
cdf=array(0)

#Calculating the pmf and cdf of the distribution till 20

for(i in 0:20)
{
    pmf[i]=dgeom(i,p)
    cdf[i]=pgeom(i,p)
}

#PLotting the pmf and the cdf

par(mfrow=c(1,2))
plot(cdf,type="S",xlab="Support",ylab="cdf",main="Plot of cdf")
plot(pmf,type="h",xlab="Support",ylab="pmf",main="Plot of pmf")
}

#Calling the function

geo(0.5)
geo(0.8)

#Function to generate graphs for geom(p)

pois=function(lambda)
{

#Calculating the pmf and cdf of the distribution till 20

pmf=array(0)
cdf=array(0)
for(i in 0:20)
{
    pmf[i]=dpois(i,lambda)
    cdf[i]=ppois(i,lambda)
}

#Plotting the pmf and the cdf

par(mfrow=c(1,2))
plot(cdf,type="S",xlab="Support",ylab="cdf",main="Plot of cdf")
plot(pmf,type="h",xlab="Support",ylab="pmf",main="Plot of pmf")
}

#Calling the function

pois(4)
pois(0.5)

Plot for Bin(10,0.5)

Plot for Geom(0.4)

Plot for Poisson(4)

(OR) TRY THIS ANSWER

(1) Binomial:

R code:

#binomial[p,n]
p=c(0.01,0.5)
n=c(10,30)
x1=rbinom(11,n[1],p[1])
x2=dbinom(0:n[1],n[1],p[1])
x3=pbinom(0:n[1],n[1],p[1])
X=data.frame(cbind(x1,x2,x3))
colnames(X)=c("Column 1", "Column 2","Column 3")
y1=rbinom(11,n[1],p[2])
y2=dbinom(0:n[1],n[1],p[2])
y3=pbinom(0:n[1],n[1],p[2])
Y=data.frame(cbind(y1,y2,y3))
colnames(Y)=c("Column 1", "Column 2","Column 3")
u1=rbinom(31,n[2],p[1])
u2=dbinom(0:n[2],n[2],p[1])
u3=pbinom(0:n[2],n[2],p[1])
U=data.frame(cbind(u1,u2,u3))
colnames(U)=c("Column 1", "Column 2","Column 3")
v1=rbinom(31,n[2],p[2])
v2=dbinom(0:n[2],n[2],p[2])
v3=pbinom(0:n[2],n[2],p[2])
V=data.frame(cbind(v1,v2,v3))
colnames(V)=c("Column 1", "Column 2","Column 3")
X
Y
U
V
par(mfrow=c(2,2))
plot(0:10,x2,type="h",xlim=c(0,10),lwd=2,ylab="P(X=x)",xlab="x",main="n=10,p=0.01")
plot(0:10,y2,type="h",xlim=c(0,10),lwd=2,ylab="P(X=x)",xlab="x",main="n=10,p=0.5")
plot(0:30,u2,type="h",xlim=c(0,30),lwd=2,ylab="P(X=x)",xlab="x",main="n=30,p=0.01")
plot(0:30,v2,type="h",xlim=c(0,30),lwd=2,ylab="P(X=x)",xlab="x",main="n=30,p=0.5")
par(mfrow=c(2,2))
plot(0:10,x3,type="h",xlim=c(0,10),lwd=2,ylab="P(X=x)",xlab="x",main="n=10,p=0.01")
plot(0:10,y3,type="h",xlim=c(0,10),lwd=2,ylab="P(X=x)",xlab="x",main="n=10,p=0.5")
plot(0:30,u3,type="h",xlim=c(0,30),lwd=2,ylab="P(X=x)",xlab="x",main="n=30,p=0.01")
plot(0:30,v3,type="h",xlim=c(0,30),lwd=2,ylab="P(X=x)",xlab="x",main="n=30,p=0.5")

Output:

Binomial(10,0.01):
Column 1 Column 2 Column 3
1 0 9.043821e-01 0.9043821
2 0 9.135172e-02 0.9957338
3 0 4.152351e-03 0.9998862
4 0 1.118478e-04 0.9999980
5 0 1.977108e-06 1.0000000
6 0 2.396495e-08 1.0000000
7 0 2.017252e-10 1.0000000
8 1 1.164359e-12 1.0000000
9 0 4.410450e-15 1.0000000
10 0 9.900000e-18 1.0000000
11 0 1.000000e-20 1.0000000

Binomial(10,0.5):
Column 1 Column 2 Column 3
1 4 0.0009765625 0.0009765625
2 6 0.0097656250 0.0107421875
3 4 0.0439453125 0.0546875000
4 5 0.1171875000 0.1718750000
5 4 0.2050781250 0.3769531250
6 7 0.2460937500 0.6230468750
7 7 0.2050781250 0.8281250000
8 6 0.1171875000 0.9453125000
9 3 0.0439453125 0.9892578125
10 6 0.0097656250 0.9990234375
11 6 0.0009765625 1.0000000000

Binomial(30,0.01):
Column 1 Column 2 Column 3
1 0 7.397004e-01 0.7397004
2 1 2.241516e-01 0.9638520
3 0 3.283029e-02 0.9966823
4 1 3.095111e-03 0.9997774
5 0 2.110303e-04 0.9999884
6 0 1.108442e-05 0.9999995
7 0 4.665160e-07 1.0000000
8 2 1.615640e-08 1.0000000
9 0 4.691884e-10 1.0000000
10 0 1.158490e-11 1.0000000
11 1 2.457403e-13 1.0000000
12 0 4.513136e-15 1.0000000
13 0 7.217979e-17 1.0000000
14 1 1.009508e-18 1.0000000
15 1 1.238213e-20 1.0000000
16 0 1.334101e-22 1.0000000
17 1 1.263353e-24 1.0000000
18 1 1.050918e-26 1.0000000
19 0 7.666629e-29 1.0000000
20 0 4.890991e-31 1.0000000
21 1 2.717217e-33 1.0000000
22 0 1.306983e-35 1.0000000
23 0 5.400755e-38 1.0000000
24 0 1.897499e-40 1.0000000
25 0 5.590274e-43 1.0000000
26 0 1.355218e-45 1.0000000
27 0 2.632513e-48 1.0000000
28 0 3.939414e-51 1.0000000
29 0 4.263435e-54 1.0000000
30 0 2.970000e-57 1.0000000
31 0 1.000000e-60 1.0000000

Binomial(30,0.5):
Column 1 Column 2 Column 3
1 18 9.313226e-10 9.313226e-10
2 15 2.793968e-08 2.887100e-08
3 13 4.051253e-07 4.339963e-07
4 13 3.781170e-06 4.215166e-06
5 13 2.552290e-05 2.973806e-05
6 16 1.327191e-04 1.624571e-04
7 16 5.529961e-04 7.154532e-04
8 16 1.895986e-03 2.611440e-03
9 18 5.450961e-03 8.062401e-03
10 18 1.332457e-02 2.138697e-02
11 14 2.798160e-02 4.936857e-02
12 21 5.087564e-02 1.002442e-01
13 10 8.055309e-02 1.807973e-01
14 11 1.115351e-01 2.923324e-01
15 20 1.354354e-01 4.277678e-01
16 13 1.444644e-01 5.722322e-01
17 15 1.354354e-01 7.076676e-01
18 19 1.115351e-01 8.192027e-01
19 10 8.055309e-02 8.997558e-01
20 18 5.087564e-02 9.506314e-01
21 15 2.798160e-02 9.786130e-01
22 18 1.332457e-02 9.919376e-01
23 16 5.450961e-03 9.973886e-01
24 13 1.895986e-03 9.992845e-01
25 17 5.529961e-04 9.998375e-01
26 16 1.327191e-04 9.999703e-01
27 14 2.552290e-05 9.999958e-01
28 12 3.781170e-06 9.999996e-01
29 17 4.051253e-07 1.000000e+00
30 18 2.793968e-08 1.000000e+00
31 13 9.313226e-10 1.000000e+00

PMF:

CDF

(2) Geometric distribution:

R code:

#Gemetric[p]
p=c(0.4,0.5)
n=20
x1=rgeom(21,p[1])
x2=dgeom(0:n,p[1])
x3=pgeom(0:n,p[1])
X=data.frame(cbind(x1,x2,x3))
colnames(X)=c("Column 1", "Column 2","Column 3")
y1=rgeom(21,p[2])
y2=dgeom(0:n,p[2])
y3=pgeom(0:n,p[2])
Y=data.frame(cbind(y1,y2,y3))
colnames(Y)=c("Column 1", "Column 2","Column 3")
X
Y
par(mfrow=c(2,1))
plot(0:n,x2,type="h",xlim=c(0,n),lwd=2,ylab="P(X=x)",xlab="x",main="p=0.4")
plot(0:n,y2,type="h",xlim=c(0,n),lwd=2,ylab="P(X=x)",xlab="x",main="p=0.5")

par(mfrow=c(2,1))
plot(0:n,x3,type="h",xlim=c(0,n),lwd=2,ylab="P(X=x)",xlab="x",main="p=0.4")
plot(0:n,y3,type="h",xlim=c(0,n),lwd=2,ylab="P(X=x)",xlab="x",main="p=0.5")

Geometric(0.4):
Column 1 Column 2 Column 3
1 0 4.000000e-01 0.4000000
2 1 2.400000e-01 0.6400000
3 0 1.440000e-01 0.7840000
4 8 8.640000e-02 0.8704000
5 0 5.184000e-02 0.9222400
6 0 3.110400e-02 0.9533440
7 5 1.866240e-02 0.9720064
8 1 1.119744e-02 0.9832038
9 0 6.718464e-03 0.9899223
10 1 4.031078e-03 0.9939534
11 1 2.418647e-03 0.9963720
12 0 1.451188e-03 0.9978232
13 0 8.707129e-04 0.9986939
14 0 5.224278e-04 0.9992164
15 0 3.134567e-04 0.9995298
16 0 1.880740e-04 0.9997179
17 2 1.128444e-04 0.9998307
18 0 6.770664e-05 0.9998984
19 0 4.062398e-05 0.9999391
20 0 2.437439e-05 0.9999634
21 1 1.462463e-05 0.9999781

Geometric(0.5):
Column 1 Column 2 Column 3
1 0 5.000000e-01 0.5000000
2 1 2.500000e-01 0.7500000
3 1 1.250000e-01 0.8750000
4 0 6.250000e-02 0.9375000
5 0 3.125000e-02 0.9687500
6 2 1.562500e-02 0.9843750
7 3 7.812500e-03 0.9921875
8 0 3.906250e-03 0.9960938
9 0 1.953125e-03 0.9980469
10 0 9.765625e-04 0.9990234
11 1 4.882812e-04 0.9995117
12 5 2.441406e-04 0.9997559
13 0 1.220703e-04 0.9998779
14 0 6.103516e-05 0.9999390
15 2 3.051758e-05 0.9999695
16 4 1.525879e-05 0.9999847
17 2 7.629395e-06 0.9999924
18 0 3.814697e-06 0.9999962
19 0 1.907349e-06 0.9999981
20 3 9.536743e-07 0.9999990
21 3 4.768372e-07 0.9999995

PMF

CDF:

3. Poisson:

R code:

#Poisson[lambda]
lambda=c(0.5,1.5)
n=20
x1=rpois(21,lambda[1])
x2=dpois(0:n,lambda[1])
x3=ppois(0:n,lambda[1])
X=data.frame(cbind(x1,x2,x3))
colnames(X)=c("Column 1", "Column 2","Column 3")
y1=rpois(21,lambda[2])
y2=dpois(0:n,lambda[2])
y3=ppois(0:n,lambda[2])
Y=data.frame(cbind(y1,y2,y3))
colnames(Y)=c("Column 1", "Column 2","Column 3")
X
Y
par(mfrow=c(2,1))
plot(0:n,x2,type="h",xlim=c(0,n),lwd=2,ylab="P(X=x)",xlab="x",main=expression(lambda==0.5))
plot(0:n,y2,type="h",xlim=c(0,n),lwd=2,ylab="P(X=x)",xlab="x",main=expression(lambda==1.5))

par(mfrow=c(2,1))
plot(0:n,x3,type="h",xlim=c(0,n),lwd=2,ylab="P(X=x)",xlab="x",main=expression(lambda==0.5))
plot(0:n,y3,type="h",xlim=c(0,n),lwd=2,ylab="P(X=x)",xlab="x",main=expression(lambda==1.5))

Poisson(0.5):

Column 1 Column 2 Column 3
1 0 6.065307e-01 0.6065307
2 0 3.032653e-01 0.9097960
3 0 7.581633e-02 0.9856123
4 0 1.263606e-02 0.9982484
5 0 1.579507e-03 0.9998279
6 0 1.579507e-04 0.9999858
7 0 1.316256e-05 0.9999990
8 1 9.401827e-07 0.9999999
9 0 5.876142e-08 1.0000000
10 1 3.264523e-09 1.0000000
11 3 1.632262e-10 1.0000000
12 1 7.419371e-12 1.0000000
13 0 3.091405e-13 1.0000000
14 1 1.189002e-14 1.0000000
15 0 4.246435e-16 1.0000000
16 0 1.415478e-17 1.0000000
17 2 4.423370e-19 1.0000000
18 0 1.300991e-20 1.0000000
19 0 3.613864e-22 1.0000000
20 1 9.510169e-24 1.0000000
21 0 2.377542e-25 1.0000000

Poisson(1.5):
Column 1 Column 2 Column 3
1 0 2.231302e-01 0.2231302
2 2 3.346952e-01 0.5578254
3 0 2.510214e-01 0.8088468
4 2 1.255107e-01 0.9343575
5 1 4.706652e-02 0.9814241
6 3 1.411996e-02 0.9955440
7 4 3.529989e-03 0.9990740
8 1 7.564262e-04 0.9998304
9 2 1.418299e-04 0.9999723
10 2 2.363832e-05 0.9999959
11 0 3.545748e-06 0.9999994
12 4 4.835111e-07 0.9999999
13 0 6.043888e-08 1.0000000
14 2 6.973717e-09 1.0000000
15 1 7.471840e-10 1.0000000
16 1 7.471840e-11 1.0000000
17 1 7.004850e-12 1.0000000
18 0 6.180750e-13 1.0000000
19 2 5.150625e-14 1.0000000
20 1 4.066283e-15 1.0000000
21 2 3.049712e-16 1.0000000

PMF:

NOTE:: I HOPE YOUR HAPPY WITH MY ANSWER....***PLEASE SUPPORT ME WITH YOUR RATING...

***PLEASE GIVE ME "LIKE"...ITS VERY IMPORTANT FOR ME NOW....PLEASE SUPPORT ME ....THANK YOU


Related Solutions

Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3 random variables...
Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3 random variables following (1) binomial distribution [p,n], (2) a geometric distribution [p], and (3) Poisson distribution [?]. You have to consider two sets of parameters per distribution which can be chosen arbitrarily. The following steps can be followed: Setp1: Establish two sets of parameters of the distribution: For Geometric and Poisson distributions take two values of p (p1 and p2) and take two values of [?],...
Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3 random variables...
Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3 random variables following (1) binomial distribution [p,n], (2) a geometric distribution [p], and (3) Poisson distribution [?]. You have to consider two sets of parameters per distribution which can be chosen arbitrarily. The following steps can be followed: Setp1: Establish two sets of parameters of the distribution: For Geometric and Poisson distributions take two values of p (p1 and p2) and take two values of [?],...
using excel   Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3...
using excel   Plot the probability mass function (PMF) and the cumulative distribution function (CDF) of 3 random variables following (1) binomial distribution [p,n], (2) a geometric distribution [p], and (3) Poisson distribution [?]. You have to consider two sets of parameters per distribution which can be chosen arbitrarily. The following steps can be followed: Setp1: Establish two sets of parameters of the distribution: For Geometric and Poisson distributions take two values of p (p1 and p2) and take two values...
Summarize key data distribution concepts including probability mass functions (PMF), probability density functions (PDF), and cumulative...
Summarize key data distribution concepts including probability mass functions (PMF), probability density functions (PDF), and cumulative distribution functions (CDF). Based on an organization or any organization you are most familiar with, provide an example of a PMF, an example of a PDF, and an example of a CDF, based on the type of data used in the organization. How would you summarize each of these to someone who is not familiar with each of these functions?
Summarize key data distribution concepts including probability mass functions (PMF), probability density functions (PDF), and cumulative...
Summarize key data distribution concepts including probability mass functions (PMF), probability density functions (PDF), and cumulative distribution functions (CDF). Based on your organization or any organization you are most familiar with, provide an example of a PMF, an example of a PDF, and an example of a CDF, based on the type of data used in the organization. How would you summarize each of these to someone who is not familiar with each of these functions?
Let X be the sum of rolling 2 dice. a) Plot the CDF and PMF of...
Let X be the sum of rolling 2 dice. a) Plot the CDF and PMF of X. b) Determine P(5 < X <=8 | x<=10) c) Determine the median, mean and variance of X d) Bonus: Compute the correlation between X and Y = the number on the first dice.
1) Define and elaborate upon the following: (a) A probability mass function (b) A cumulative distribution...
1) Define and elaborate upon the following: (a) A probability mass function (b) A cumulative distribution function (c) A discrete uniform distribution (d) A Bernoulli trial (e) A Binomial distribution
Given the cumulative distribution of an exponential random variable find: The probability density function Show that...
Given the cumulative distribution of an exponential random variable find: The probability density function Show that it is a valid probability function The moment generating function The Expected mean The variance
Given the cumulative distribution of a gamma random variable find: The probability density function Show that...
Given the cumulative distribution of a gamma random variable find: The probability density function Show that it is a valid probability function The moment generating function The Expected mean The variance
One paragraph notes on Continuous Random Variables - Cumulative Distribution Function has to be own words...
One paragraph notes on Continuous Random Variables - Cumulative Distribution Function has to be own words not copy paste..
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT