Question

In: Physics

Two stars of mass M1 and M2<M1 are orbiting eachother in a circular orbit. The heavy...

Two stars of mass M1 and M2<M1 are orbiting eachother in a circular orbit. The heavy star experiences a supernova explosion, losing most of its mass in a spherically symmetric outflow (i.e. without losing angular momentum) and leaving behind a small neutron star of mass MNS. Show that if the mass lost is larger then half of the total mass of the system, the binary is disrupted.

Solutions

Expert Solution


Related Solutions

Two stars of mass M?1 and M?2<M?1 are orbiting eachother in a circular orbit. The heavy...
Two stars of mass M?1 and M?2<M?1 are orbiting eachother in a circular orbit. The heavy star experiences a supernova explosion, losing most of its mass in a spherically symmetric outflow (i.e. without losing angular momentum) and leaving behind a small neutron star of mass M??NS. Show that if the mass lost is larger then half of the total mass of the system, the binary is disrupted.
Problem 1. A particle is orbiting a star of mass M in a circular orbit. (a,...
Problem 1. A particle is orbiting a star of mass M in a circular orbit. (a, 2 POINTS) Find the equation that provides the orbital speed at a given distance r from the center of the star. (b, 1 POINT) From the result at (a), calculate at what distance rS the particle should be from the center of the star for its orbital speed to be equal to the speed of light, c (in this case, the particle would be...
Q10. Assume that the Earth is orbiting the sun in a perfectly circular orbit. If the...
Q10. Assume that the Earth is orbiting the sun in a perfectly circular orbit. If the Earth is hit by a huge meteorite but its orbiting angular momentum is not changed (this can be the case if the hit is along the radial direction of the orbit), what would be the change in Earth’s orbit? A. No change B. Earth would move in a circular orbit with a larger radius C. Earth would move in a circular orbit with a...
Derive an expression for the total number of stars between masses M1 and M2, where M1...
Derive an expression for the total number of stars between masses M1 and M2, where M1 < M2. Can the Salpeter IMF extend to arbitrarily low mass stars? Justify your answer quantitatively Derive an expression for the total mass in stars formed with masses between M1 and M2, where M1 < M2.
two masses m1 = 4.70 kg and m2 which has a mass 50.0% that of m1,...
two masses m1 = 4.70 kg and m2 which has a mass 50.0% that of m1, are attached to a cord of negligible mass which passes over a frictionless pulley also of negligible mass. If m1 and m2 start from rest, after they have each traveled a distance h = 2.90 m, use energy content to determine the following. (a) speed v of the masses (b) magnitude of the tension T in the cord
1. Suppose we have two blocks of masses m1 and m2. The block with mass m1...
1. Suppose we have two blocks of masses m1 and m2. The block with mass m1 is moving towards block m2 at speed v. After the collision, we measure the total kinetic energy and find that the total kinetic energy after the collision is m2/(m1+m2) less than the kinetic energy before the collision. Find the final speeds of the two blocks. What type of collision is this? 2. Explain, in words, how we know that a freely spinning asteroid in...
A spaceship of mass ? is on a circular orbit around a planet of mass ?,...
A spaceship of mass ? is on a circular orbit around a planet of mass ?, and is moving with constant speed ?0. (a) What is the radius of the orbit of the spaceship? A sudden explosion tears the spaceship into two pieces of equal mass. Piece 1 leaves the explosion with speed 4?0/5 with its velocity is in the same direction of the velocity of the spaceship before the explosion. As ? ≪ ?, the gravitational attraction between the...
a.) Derive the equations of motion for an object with mass(m1) that is orbiting the second...
a.) Derive the equations of motion for an object with mass(m1) that is orbiting the second object of mass (m2>>m1) in a perfectly circular orbit with radius(R) and orbital period (T). (Use lagrangian mechanics & show work) b.) Find the hamiltonian of the system and describe how it is related to the system energy.
Two stars of equal mass orbit one another. (This is called a binary star system.) If...
Two stars of equal mass orbit one another. (This is called a binary star system.) If the stars’ orbits have a semimajor axis of 2.5x10^8 km and complete one orbit every 2.4 years, what is the mass of each star? pick from: (8.1x10^29 kg, 1.6x10^30 kg, 8.1x10^20 kg, 1.6x10^21 kg) A satellite orbits a planet at a distance r. If it has a circular orbit, the total energy (E=K+U) of the satellite is equal to: Hint: F_centripetal=mv^2/r pick from: (E=0,...
A block of mass m1 = 1.31 kg and a block of mass m2 = 11.4...
A block of mass m1 = 1.31 kg and a block of mass m2 = 11.4 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 2 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.24 for both blocks. Determine the acceleration of the blocks.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT