Question

In: Physics

Two stars of mass M?1 and M?2<M?1 are orbiting eachother in a circular orbit. The heavy...

Two stars of mass M?1 and M?2<M?1 are orbiting eachother in a circular orbit. The heavy star experiences a supernova explosion, losing most of its mass in a spherically symmetric outflow (i.e. without losing angular momentum) and leaving behind a small neutron star of mass M??NS. Show that if the mass lost is larger then half of the total mass of the system, the binary is disrupted.

Solutions

Expert Solution


Related Solutions

Two stars of mass M1 and M2<M1 are orbiting eachother in a circular orbit. The heavy...
Two stars of mass M1 and M2<M1 are orbiting eachother in a circular orbit. The heavy star experiences a supernova explosion, losing most of its mass in a spherically symmetric outflow (i.e. without losing angular momentum) and leaving behind a small neutron star of mass MNS. Show that if the mass lost is larger then half of the total mass of the system, the binary is disrupted.
Problem 1. A particle is orbiting a star of mass M in a circular orbit. (a,...
Problem 1. A particle is orbiting a star of mass M in a circular orbit. (a, 2 POINTS) Find the equation that provides the orbital speed at a given distance r from the center of the star. (b, 1 POINT) From the result at (a), calculate at what distance rS the particle should be from the center of the star for its orbital speed to be equal to the speed of light, c (in this case, the particle would be...
An object of mass m is in a circular orbit another heavier object of mass M....
An object of mass m is in a circular orbit another heavier object of mass M. The radius of the orbit is R. (a) Derive the speed of the orbiting object. (b) Use this speed to derive the period of the circular orbit. (c) Use your answer and the provided value to determine the period of Earth’s orbit around the Sun based on our simplified circular motion model. Compare this to the actual value which you can look up. Use...
A spaceship of mass ? is on a circular orbit around a planet of mass ?,...
A spaceship of mass ? is on a circular orbit around a planet of mass ?, and is moving with constant speed ?0. (a) What is the radius of the orbit of the spaceship? A sudden explosion tears the spaceship into two pieces of equal mass. Piece 1 leaves the explosion with speed 4?0/5 with its velocity is in the same direction of the velocity of the spaceship before the explosion. As ? ≪ ?, the gravitational attraction between the...
Two stars of equal mass orbit one another. (This is called a binary star system.) If...
Two stars of equal mass orbit one another. (This is called a binary star system.) If the stars’ orbits have a semimajor axis of 2.5x10^8 km and complete one orbit every 2.4 years, what is the mass of each star? pick from: (8.1x10^29 kg, 1.6x10^30 kg, 8.1x10^20 kg, 1.6x10^21 kg) A satellite orbits a planet at a distance r. If it has a circular orbit, the total energy (E=K+U) of the satellite is equal to: Hint: F_centripetal=mv^2/r pick from: (E=0,...
A rocket with mass 5.00×103 kg is in a circular orbit of radius 7.30×106 m around...
A rocket with mass 5.00×103 kg is in a circular orbit of radius 7.30×106 m around the earth. The rocket's engines fire for a period of time to increase that radius to 8.70×106 m , with the orbit again circular. A)What is the change in the rocket's gravitational potential energy? Does the potential energy increase or decrease? B) How much work is done by the rocket engines in changing the orbital radius
A rocket with mass 4.00×103 kg is in a circular orbit of radius 7.40×106 m around...
A rocket with mass 4.00×103 kg is in a circular orbit of radius 7.40×106 m around the earth. The rocket's engines fire for a period of time to increase that radius to 8.90×106 m, with the orbit again circular. a) What is the change in the rocket's kinetic energy? Does the kinetic energy increase or decrease? b) What is the change in the rocket's gravitational potential energy? Does the potential energy increase or decrease? c) How much work is done...
A landing craft with mass 1.22×104 kg is in a circular orbit a distance 5.70×105 m...
A landing craft with mass 1.22×104 kg is in a circular orbit a distance 5.70×105 m above the surface of a planet. The period of the orbit is 5600 s . The astronauts in the lander measure the diameter of the planet to be 9.80×106 m . The lander sets down at the north pole of the planet. A. What is the weight w of an astronaut of mass 86.0 kg as he steps out onto the planet's surface?
A satellite has a mass of 6189 kg and is in a circular orbit 4.84 ×...
A satellite has a mass of 6189 kg and is in a circular orbit 4.84 × 105 m above the surface of a planet. The period of the orbit is 2.4 hours. The radius of the planet is 4.80 × 106 m. What would be the true weight of the satellite if it were at rest on the planet’s surface? W = ?
1.Consider a satellite of the earth in a circular orbit of radius R. Let M and...
1.Consider a satellite of the earth in a circular orbit of radius R. Let M and m be the mass of the earth and that of the satellite, respectively. Show that the centripetal acceleration of the satellite is aR = -(v^2/R)*(r/r) where v = |v| is the magnitude of the velocity V and r/r is a unit vector in the radial direction. 2.Using Newton's second low of motion and the law of universal gravitation, determine the speed v=|V| and the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT