In: Statistics and Probability
13. A researcher assesses 7 students on test anxiety using blood pressure as a measure (the higher the blood pressure, the greater the anxiety); she then assesses the same subjects again after they view a 2-hour videotape on "relaxation techniques under stress". The results, average systolic blood pressure, were:
Subject Before After
1 120 110
2 160 110
3 124 100
4 135 99
5 170 115
6 143 106
7 188 89
   1. State the independent and dependent
variables.
   2. State the Null Hypothesis in words and
symbols.
   3. Compute the appropriate statistic.
   4. What is the decision? reject
   5. State the full conclusion in words.
| Sample #1 | Sample #2 | difference , Di =sample1-sample2 | (Di - Dbar)² | 
| 120 | 110 | 10.00 | 1185.33 | 
| 160 | 110 | 50.00 | 31.04 | 
| 124 | 100 | 24.00 | 417.33 | 
| 135 | 99 | 36.00 | 71.04 | 
| 170 | 115 | 55.00 | 111.76 | 
| 143 | 106 | 37.00 | 55.18 | 
| 188 | 89 | 99.00 | 2978.04 | 
| sample 1 | sample 2 | Di | (Di - Dbar)² | |
| sum = | 1040 | 729 | 311.000 | 4849.714 | 
Ho :   µd=   30  
           
   
Ha :   µd ╪   30  
          
   
Ho: DIFFERENCE OF BLOOD PRESSURE IS EQUAL BEFORE AND AFTER
RELAXATION TECHNIQUE
Ha: DIFFERENCE OF BLOOD PRESSURE IS not EQUAL BEFORE AND AFTER
RELAXATION TECHNIQUE   
Level of Significance ,    α =   
0.05       claim:µd=0  
       
          
           
   
sample size ,    n =    7  
           
   
          
           
   
mean of sample 1,    x̅1=   148.571  
           
   
          
           
   
mean of sample 2,    x̅2=   104.143  
           
   
          
           
   
mean of difference ,    D̅ =ΣDi / n =  
44.429          
       
          
           
   
std dev of difference , Sd =    √ [ (Di-Dbar)²/(n-1) =
   28.4304      
           
          
           
   
std error , SE = Sd / √n =    28.4304   /
√   7   =   10.7457  
   
          
           
   
t-statistic = (D̅ - µd)/SE = (  
44.42857143   -   30   ) /
   10.7457   =   1.343
          
           
   
Degree of freedom, DF=   n - 1 =   
6          
          
  
          
           
   
p-value =       
0.227924   [excel function: =t.dist.2t(t-stat,df) ]
          
   
decision p-value>α , Do not reject null
hypothesis     
conclusion : DIFFERENCE OF BLOOD PRESSURE IS EQUAL BEFORE AND AFTER RELAXATION TECHNIQUE
Please revert in case of any doubt.
Please upvote. Thanks in advance