In: Statistics and Probability
Click to see additional instructions
The following data represent the weight of a child riding a bike and the rolling distance achieved after going down a hill without pedaling.
Weight (lbs.) |
Rolling Distance (m.) |
59 |
26 |
83 |
43 |
97 |
49 |
56 |
20 |
103 |
65 |
87 |
44 |
88 |
48 |
91 |
42 |
52 |
39 |
63 |
33 |
71 |
39 |
100 |
49 |
89 | 55 |
103 |
53 |
99 | 42 |
74 | 33 |
Find the 95% prediction interval for rolling distance when a child riding the bike weighs 106 lbs. (round to 4 decimal places
Weight (X) | Distance (Y) | X * Y | X2 | Ŷ | Sxx =Σ (Xi - X̅ )2 | Syy = Σ( Yi - Y̅ )2 | Sxy = Σ (Xi - X̅ ) * (Yi - Y̅) | |
59 | 26 | 1534 | 3481 | 30.366 | 537.660 | 272.250 | 382.594 | |
83 | 43 | 3569 | 6889 | 42.925 | 0.660 | 0.250 | 0.406 | |
97 | 49 | 4753 | 9409 | 50.251 | 219.410 | 42.250 | 96.281 | |
56 | 20 | 1120 | 3136 | 28.796 | 685.785 | 506.250 | 589.219 | |
103 | 65 | 6695 | 10609 | 53.391 | 433.160 | 506.250 | 468.281 | |
87 | 44 | 3828 | 7569 | 45.018 | 23.160 | 2.250 | 7.219 | |
88 | 48 | 4224 | 7744 | 45.542 | 33.785 | 30.250 | 31.969 | |
91 | 42 | 3822 | 8281 | 47.112 | 77.660 | 0.250 | -4.406 | |
52 | 39 | 2028 | 2704 | 26.703 | 911.285 | 12.250 | 105.656 | |
63 | 33 | 2079 | 3969 | 32.459 | 368.160 | 90.250 | 182.281 | |
71 | 39 | 2769 | 5041 | 36.646 | 125.160 | 12.250 | 39.156 | |
100 | 49 | 4900 | 10000 | 51.821 | 317.285 | 42.250 | 115.781 | |
89 | 55 | 4895 | 7921 | 46.065 | 46.410 | 156.250 | 85.156 | |
103 | 53 | 5459 | 10609 | 53.391 | 433.160 | 110.250 | 218.531 | |
99 | 42 | 4158 | 9801 | 51.298 | 282.660 | 0.250 | -8.406 | |
74 | 33 | 2442 | 5476 | 38.216 | 67.035 | 90.250 | 77.781 | |
Total | 1315 | 680 | 58275 | 112639 | 680.000 | 4562.438 | 1874.000 | 2387.500 |
Equation of regression line is Ŷ = a + bX
b = ( n Σ(XY) - (ΣX* ΣY) ) / ( n Σ X2 - (ΣX)2 )
b = ( 16 * 58275 - 1315 * 680 ) / ( 16 * 112639 - ( 1315 )2)
b = 0.5233
a =( ΣY - ( b * ΣX ) ) / n
a =( 680 - ( 0.5233 * 1315 ) ) / 16
a = -0.5083
Equation of regression line becomes Ŷ = -0.5083 + 0.5233
X
X̅ = Σ (Xi / n ) = 1315/16 = 82.1875
Y̅ = Σ (Yi / n ) = 680/16 = 42.5
Estimated Error Variance (σ̂2) =
S2 = ( 1874 - 0.5233 * 2387.5 ) / 16 - 2
S2 = 44.6158
S = 6.6795
Predictive Confidence Interval of
Ŷ = -0.5083 + 0.5233 X
Ŷ = 54.9615
t(150.5333/2) = t(0.05/2) = 2.145
X̅ = (Xi / n ) = 1315/16 = 82.1875
= 54.9615
95% Predictive confidence interval is ( 39.3532 <
< 70.5698 ).