In: Statistics and Probability
|
25 |
49 |
66 |
44 |
60 |
|
36 |
51 |
78 |
41 |
54 |
|
32 |
54 |
80 |
56 |
48 |
|
41 |
65 |
64 |
62 |
53 |
|
47 |
72 |
39 |
69 |
44 |
1) Average
2) Medium
3) Q1
4) Q3
5) P63
6) P93
7) Range
8) Variance
9) Standard Deviation
10) Construct a box-mustache graph for the above data.
| Number | Values ( X ) |
| 1 | 25 |
| 2 | 32 |
| 3 | 36 |
| 4 | 39 |
| 5 | 41 |
| 6 | 41 |
| 7 | 44 |
| 8 | 44 |
| 9 | 47 |
| 10 | 48 |
| 11 | 49 |
| 12 | 51 |
| 13 | 53 |
| 14 | 54 |
| 15 | 54 |
| 16 | 56 |
| 17 | 60 |
| 18 | 62 |
| 19 | 64 |
| 20 | 65 |
| 21 | 66 |
| 22 | 69 |
| 23 | 72 |
| 24 | 78 |
| 25 | 80 |
Part 1)
Mean X̅ = Σ Xi / n
X̅ = 1330 / 25 = 53.2
Part 2)
Q2 = (1/2 n + 1/2 )th value
Q2 = (1/2 * 25 + 1/2 )th value
Median (Q2) = 53
Part 3)
Q1 = (1/4 n + 1/4 )th value
Q1 = (1/4 * 25 + 1/4 )th value
Q1 = 42.5
Part 4)
Q3 = (3/4 n + 3/4 )th value
Q3 = (3/4 * 25 + 3/4 )th value
Q3 = 64.5
Part 5)
Percentile = ( P/100 * n + 1/2 )th value
Percentile = ( 63/100 * 25 + 1/2 )th value
Percentile = 57.52
Part 6)
Percentile = ( P/100 * n + 1/2 )th value
Percentile = ( 93/100 * 25 + 1/2 )th value
Percentile = 78.36
Part 7)
Range = Highest value - Lowest value = 55
Lowest value = 25
Highest value = 80
Part 8)
Variance σ2 = ( (Xi - X̅ )2 / n )
σ2 = ( 4786 / 25 ) = 191.44
Part 9)
Standard deviation σ = √( (Xi - X̅ )2 / n ) = 13.8362
Part 10)
