In: Statistics and Probability
A die is rolled 50 times and the following are the outputs:
6 1 3 4 2 6 3 5 1 3 6 1 6 6 3 3 6 5 2 4 1 6 5 3 1 2 5 2 1 2 4 1 4 1 5 5 6 6 2 1 1 2 5 6 5 5 6 3 1 3
What is the p-value of the chi-square test that the die is unbiased?
Solution:
Test statistic formula for chi square test is given as below:
Chi square = ∑[(O – E)^2/E]
Where, O is observed frequencies and E is expected frequencies.
The calculation table for the above test statistic is given as below:
Outcome |
O |
E |
(O - E)^2/E |
1 |
11 |
8.333333 |
0.853333333 |
2 |
7 |
8.333333 |
0.213333333 |
3 |
8 |
8.333333 |
0.013333333 |
4 |
4 |
8.333333 |
2.253333333 |
5 |
9 |
8.333333 |
0.053333333 |
6 |
11 |
8.333333 |
0.853333333 |
Total |
50 |
50 |
4.24 |
Chi square = ∑[(O – E)^2/E]
Chi square = 4.24
Test statistic = 4.24
We are given
N = 6 outcomes
Degrees of freedom = df = N – 1 = 6 – 1 = 5
So, required p-value for this test by using chi square table or excel is given as below:
P-value = 0.515404429
P-value = 0.5154
P-value > α = 0.05
So, we do not reject the null hypothesis
There is sufficient evidence to conclude that die is unbiased.