In: Finance
Bond jay
| K = Nx2 |
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
| k=1 |
| K =16x2 |
| Bond Price =∑ [(7*1000/200)/(1 + 10/200)^k] + 1000/(1 + 10/200)^16x2 |
| k=1 |
| Bond Price = 762.96 |
bond k
| K = Nx2 |
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
| k=1 |
| K =16x2 |
| Bond Price =∑ [(13*1000/200)/(1 + 10/200)^k] + 1000/(1 + 10/200)^16x2 |
| k=1 |
| Bond Price = 1237.04 |
| Change in YTM =2 |
| Bond Jay |
| K = Nx2 |
| Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
| k=1 |
| K =16x2 |
| Bond Price =∑ [(7*1000/200)/(1 + 12/200)^k] + 1000/(1 + 12/200)^16x2 |
| k=1 |
| Bond Price = 647.9 |
| %age change in price =(New price-Old price)*100/old price |
| %age change in price = (647.9-762.96)*100/762.96 |
| = -15.08% |
| Bond k |
| K = Nx2 |
| Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
| k=1 |
| K =16x2 |
| Bond Price =∑ [(13*1000/200)/(1 + 12/200)^k] + 1000/(1 + 12/200)^16x2 |
| k=1 |
| Bond Price = 1070.42 |
| %age change in price =(New price-Old price)*100/old price |
| %age change in price = (1070.42-1237.04)*100/1237.04 |
| = -13.47% |
| Change in YTM =-2 |
| Bond Jay |
| K = Nx2 |
| Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
| k=1 |
| K =16x2 |
| Bond Price =∑ [(7*1000/200)/(1 + 8/200)^k] + 1000/(1 + 8/200)^16x2 |
| k=1 |
| Bond Price = 910.63 |
| %age change in price =(New price-Old price)*100/old price |
| %age change in price = (910.63-762.96)*100/762.96 |
| = 19.35% |
| Bond k |
| K = Nx2 |
| Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
| k=1 |
| K =16x2 |
| Bond Price =∑ [(13*1000/200)/(1 + 8/200)^k] + 1000/(1 + 8/200)^16x2 |
| k=1 |
| Bond Price = 1446.84 |
| %age change in price =(New price-Old price)*100/old price |
| %age change in price = (1446.84-1237.04)*100/1237.04 |
| = 16.96% |