In: Statistics and Probability
For the data set (−1,−1),(2,0),(6,5),(9,6),(12,11), find interval estimates (at a 95% significance level) for single values and for the mean value of ? corresponding to ?=1.
Note: For each part below, your answer should use interval notation.
Interval Estimate for Single Value =
Interval Estimate for Mean Value =
SSE =Syy-(Sxy)2/Sxx= | 4.321 |
a | s2 =SSE/(n-2)= | 1.4402 |
std error σ = | =se =√s2= | 1.2001 |
predicted val=-0.8974+1*0.9103= | 0.013 |
a)
std error prediction interval= s*√(1+1/n+(x0-x̅)2/Sxx)= | 1.4168 | |||
for 95 % CI value of t= | 3.182 | |||
margin of error E=t*std error = | 4.5088 | |||
lower prediction bound=sample mean-margin of error = | -4.4960 | |||
Upper prediction bound=sample mean+margin of error= | 4.5217 |
Interval Estimate for Single Value = (-4.4960 , 4.5217)
b)
std error confidence interval= s*√(1/n+(x0-x̅)2/Sxx)= | 0.7531 | |||
for 95 % CI value of t= | 3.182 | |||
margin of error E=t*std error = | 2.40 | |||
lower confidence bound=sample mean-margin of error = | -2.3838 | |||
Upper confidence bound=sample mean+margin of error= | 2.4094 |
Interval Estimate for Mean Value = (-2.3838 , 2.4094)