In: Statistics and Probability
For the data set (−1,−1),(2,0),(6,5),(9,6),(12,11), find interval estimates (at a 95% significance level) for single values and for the mean value of ? corresponding to ?=1.
Note: For each part below, your answer should use interval notation.
Interval Estimate for Single Value =
Interval Estimate for Mean Value =

| SSE =Syy-(Sxy)2/Sxx= | 4.321 | |
| a | s2 =SSE/(n-2)= | 1.4402 | 
| std error σ = | =se =√s2= | 1.2001 | 
| predicted val=-0.8974+1*0.9103= | 0.013 | |
a)
| std error prediction interval= s*√(1+1/n+(x0-x̅)2/Sxx)= | 1.4168 | |||
| for 95 % CI value of t= | 3.182 | |||
| margin of error E=t*std error = | 4.5088 | |||
| lower prediction bound=sample mean-margin of error = | -4.4960 | |||
| Upper prediction bound=sample mean+margin of error= | 4.5217 | |||
Interval Estimate for Single Value = (-4.4960 , 4.5217)
b)
| std error confidence interval= s*√(1/n+(x0-x̅)2/Sxx)= | 0.7531 | |||
| for 95 % CI value of t= | 3.182 | |||
| margin of error E=t*std error = | 2.40 | |||
| lower confidence bound=sample mean-margin of error = | -2.3838 | |||
| Upper confidence bound=sample mean+margin of error= | 2.4094 | |||
Interval Estimate for Mean Value = (-2.3838 , 2.4094)