In: Finance
What is the Macaulay duration of a semiannual-pay 7.62 percent coupon bond with 11 years to maturity and a yield to maturity of 6.06 percent?
Solve with Macaulay duration formula
K = Nx2 |
Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =11x2 |
Bond Price =∑ [(7.62*1000/200)/(1 + 6.06/200)^k] + 1000/(1 + 6.06/200)^11x2 |
k=1 |
Bond Price = 1123.94 |
Period | Cash Flow | Discounting factor | PV Cash Flow | Duration Calc |
1 | 38.10 | 1.0303 | 36.98 | 36.98 |
2 | 38.10 | 1.0615 | 35.89 | 71.78 |
3 | 38.10 | 1.0937 | 34.84 | 104.51 |
4 | 38.10 | 1.1268 | 33.81 | 135.25 |
5 | 38.10 | 1.1610 | 32.82 | 164.09 |
6 | 38.10 | 1.1961 | 31.85 | 191.11 |
7 | 38.10 | 1.2324 | 30.92 | 216.41 |
8 | 38.10 | 1.2697 | 30.01 | 240.05 |
9 | 38.10 | 1.3082 | 29.12 | 262.12 |
10 | 38.10 | 1.3478 | 28.27 | 282.68 |
11 | 38.10 | 1.3887 | 27.44 | 301.80 |
12 | 38.10 | 1.4308 | 26.63 | 319.55 |
13 | 38.10 | 1.4741 | 25.85 | 336.00 |
14 | 38.10 | 1.5188 | 25.09 | 351.21 |
15 | 38.10 | 1.5648 | 24.35 | 365.23 |
16 | 38.10 | 1.6122 | 23.63 | 378.12 |
17 | 38.10 | 1.6611 | 22.94 | 389.93 |
18 | 38.10 | 1.7114 | 22.26 | 400.73 |
19 | 38.10 | 1.7632 | 21.61 | 410.55 |
20 | 38.10 | 1.8167 | 20.97 | 419.45 |
21 | 38.10 | 1.8717 | 20.36 | 427.47 |
22 | 1,038.10 | 1.9284 | 538.32 | 11,842.97 |
17,647.98 |
as an example : for period 2
CF = coupon*par value/(number of coupons per year*100) = (7.62*1000)/(2*100) = 38.1
Discounting factor = (1+YTM/(number of coupon per year))^corresponding period
=(1+0.0606/2)^2
=1.0615
PV cash flow = cash flow/discounting factor = 38.1/1.0615 = 35.89
Duration calc: = PV cash flow*corresponding period = 35.89*2 = 71.78
Note: in last period : cash flow = coupon + par value
= sum of all duration calcduration calc = PV cash flow*n
PV cash flow = cash flow/(1+ytm)^n
Vb= bond price
macaulay duration = sum of all duration calc/bond price /number of coupons per year= 17647.98/1123.94/2=7.85
N CF
Where Macaulay duration = 1+i 1-1 Mac V.