In: Statistics and Probability
| 
 ti  | 
 yi  | 
| 
 1  | 
 104  | 
| 
 2  | 
 250  | 
| 
 3  | 
 310  | 
| 
 4  | 
 410  | 
| 
 5  | 
 510  | 
| 
 6  | 
 610  | 
| 
 7  | 
 680  | 
| 
 8  | 
 818  | 
| 
 9  | 
 943  | 
(a) Find the values of b0 and b1.
(b) Find the Coefficient of Determination.
(c) Find the sample correlation coefficient.
(d) Find the estimated standard deviation of b1 and the corresponding t-statistic. At the 1% level of significance, can you reject the null hypothesis? Make sure you state the null and alternative hypotheses.
Please try to include the entire calculations, I need to understand how to solve the question. Also, we can't use Excel to solve this question it must be manual. Thank you SO much in advance.
| x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 1 | 104 | 16.00 | 168921.00 | 1644.00 | 
| 2 | 250 | 9.00 | 70225.00 | 795.00 | 
| 3 | 310 | 4.00 | 42025.00 | 410.00 | 
| 4 | 410 | 1.00 | 11025.00 | 105.00 | 
| 5 | 510 | 0.00 | 25.00 | 0.00 | 
| 6 | 610 | 1.00 | 9025.00 | 95.00 | 
| 7 | 680 | 4.00 | 27225.00000 | 330.0000 | 
| 8 | 818 | 9.00 | 91809.00000 | 909.000 | 
| 9 | 943 | 16.00 | 183184.00 | 1712.00 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 45.00 | 4635.00 | 60.00 | 603464.00 | 6000.0 | 
| mean | 5.00 | 515.00 | SSxx | SSyy | SSxy | 
a)
sample size ,   n =   9  
       
here, x̅ = Σx / n=   5.000   ,
    ȳ = Σy/n =  
515.000  
          
       
SSxx =    Σ(x-x̅)² =    60.0000  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   6000.0  
       
          
       
estimated slope , ß1 = SSxy/SSxx =  
6000.0   /   60.000   =  
100.00000
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
15.00000      
   
b) R² = (Sxy)²/(Sx.Sy) = 0.9943
c) correlation coefficient , r = Sxy/√(Sx.Sy) = 0.9971
d)
Ho:   ß1=   0
H1:   ß1╪   0
SSE=   (SSxx * SSyy - SS²xy)/SSxx =   
3464.0000
      
std error ,Se =    √(SSE/(n-2)) =   
22.2454
estimated std error of slope =Se(ß1) = Se/√Sxx = 22.245 /√ 60.00 = 2.8719
t stat = estimated slope/std error =ß1 /Se(ß1) =
   100.0000   /   2.8719  
=   34.8206
Degree of freedom ,df = n-2=   7  
p-value =    0.000000  
decison :    p-value<α , reject
Ho