In: Statistics and Probability
ti |
yi |
1 |
104 |
2 |
250 |
3 |
310 |
4 |
410 |
5 |
510 |
6 |
610 |
7 |
680 |
8 |
818 |
9 |
943 |
(a) Find the values of b0 and b1.
(b) Find the Coefficient of Determination.
(c) Find the sample correlation coefficient.
(d) Find the estimated standard deviation of b1 and the corresponding t-statistic. At the 1% level of significance, can you reject the null hypothesis? Make sure you state the null and alternative hypotheses.
Please try to include the entire calculations, I need to understand how to solve the question. Also, we can't use Excel to solve this question it must be manual. Thank you SO much in advance.
x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
1 | 104 | 16.00 | 168921.00 | 1644.00 |
2 | 250 | 9.00 | 70225.00 | 795.00 |
3 | 310 | 4.00 | 42025.00 | 410.00 |
4 | 410 | 1.00 | 11025.00 | 105.00 |
5 | 510 | 0.00 | 25.00 | 0.00 |
6 | 610 | 1.00 | 9025.00 | 95.00 |
7 | 680 | 4.00 | 27225.00000 | 330.0000 |
8 | 818 | 9.00 | 91809.00000 | 909.000 |
9 | 943 | 16.00 | 183184.00 | 1712.00 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 45.00 | 4635.00 | 60.00 | 603464.00 | 6000.0 |
mean | 5.00 | 515.00 | SSxx | SSyy | SSxy |
a)
sample size , n = 9
here, x̅ = Σx / n= 5.000 ,
ȳ = Σy/n =
515.000
SSxx = Σ(x-x̅)² = 60.0000
SSxy= Σ(x-x̅)(y-ȳ) = 6000.0
estimated slope , ß1 = SSxy/SSxx =
6000.0 / 60.000 =
100.00000
intercept, ß0 = y̅-ß1* x̄ =
15.00000
b) R² = (Sxy)²/(Sx.Sy) = 0.9943
c) correlation coefficient , r = Sxy/√(Sx.Sy) = 0.9971
d)
Ho: ß1= 0
H1: ß1╪ 0
SSE= (SSxx * SSyy - SS²xy)/SSxx =
3464.0000
std error ,Se = √(SSE/(n-2)) =
22.2454
estimated std error of slope =Se(ß1) = Se/√Sxx = 22.245 /√ 60.00 = 2.8719
t stat = estimated slope/std error =ß1 /Se(ß1) =
100.0000 / 2.8719
= 34.8206
Degree of freedom ,df = n-2= 7
p-value = 0.000000
decison : p-value<α , reject
Ho