In: Finance
You receive $4,000 every three months beginning three months from today for 7 years and an additional $1,200 7 years from today. If the interest rate is 3.0% (EAR), which of the following is closest to the present value (PV) of this stream of cash flows?
How should I solve this using the hp10bii+ calculator? If you could show me the steps that would be great!
| A | B | C | D | E | F | G | H | I | J | K | L | M | 
| 2 | ||||||||||||
| 3 | First payment starts at month | 3 | ||||||||||
| 4 | Amount paid every 3 month | $4,000 | ||||||||||
| 5 | Additional amount to be paid at the end of year 7 | $1,200 | ||||||||||
| 6 | Interest rate (EAR) | 3% | ||||||||||
| 7 | Period | 7 | Years | |||||||||
| 8 | Since the amount is paid quarterly therefore the quarterly interest rate needs to be calculated. | |||||||||||
| 9 | Compounding frequency | 4 | ||||||||||
| 10 | Total number of quarters | 28 | ||||||||||
| 11 | ||||||||||||
| 12 | Assuming the quarterly interest rate is r, | |||||||||||
| 13 | then | |||||||||||
| 14 | (1+r)4 = (1+3%) | |||||||||||
| 15 | Using the above equation, | |||||||||||
| 16 | r | 0.74% | =((1+D6)^(1/D9))-1 | |||||||||
| 17 | ||||||||||||
| 18 | The amount required today will be the present value of future cash flows. | |||||||||||
| 19 | Quarter | 0 | 1 | 2 | 3 | 4 | … | 23 | 28 | |||
| 20 | Payment | $4,000 | $4,000 | $4,000 | $4,000 | $4,000 | $4,000 | $5,200 | =$D$4+D5 | |||
| 21 | ||||||||||||
| 22 | Present value of payments | =Present value of annuity of $4000 for 28 quarters at 0.74% rate + PV of $1200 paid at 28th quarter at 0.74% | ||||||||||
| 23 | =4000*(P/A,0.74%,28)+1200*(P/F,0.74%,28) | |||||||||||
| 24 | ||||||||||||
| 25 | Present value of cash flows can be found by entering the following values in financial calculator: | |||||||||||
| 26 | FV | $1,200 | ||||||||||
| 27 | PMT | ($1,200.00) | ||||||||||
| 28 | I/Y | 0.74% | (Enter 0.74 in place of 0.74%) | |||||||||
| 29 | N | 28 | ||||||||||
| 30 | ||||||||||||
| 31 | After entering the above values, press PV which will given the bond price in negative. | |||||||||||
| 32 | ||||||||||||
| 33 | PV of cash flows | $29,264.01 | =PV(D28,D29,D27,D26) | |||||||||
| 34 | ||||||||||||
| 35 | Hence PV of cash flows is | $29,264.01 | ||||||||||
| 36 | ||||||||||||
Formula sheet
