In: Statistics and Probability
| 
 y  | 
 x  | 
 xy  | 
 xx  | 
 yy  | 
| 
 11.4  | 
 0  | 
 0  | 
 0  | 
 129.96  | 
| 
 11.9  | 
 1  | 
 11.9  | 
 1  | 
 141.61  | 
| 
 7.1  | 
 2  | 
 14.2  | 
 4  | 
 50.41  | 
| 
 14.2  | 
 3  | 
 42.6  | 
 9  | 
 201.64  | 
| 
 5.9  | 
 4  | 
 23.6  | 
 16  | 
 34.81  | 
| 
 6.1  | 
 5  | 
 30.5  | 
 25  | 
 37.21  | 
| 
 5.4  | 
 6  | 
 32.4  | 
 36  | 
 29.16  | 
| 
 3.1  | 
 7  | 
 21.7  | 
 49  | 
 9.61  | 
| 
 5.7  | 
 8  | 
 45.6  | 
 64  | 
 32.49  | 
| 
 4.4  | 
 9  | 
 39.6  | 
 81  | 
 19.36  | 
| 
 4  | 
 10  | 
 40  | 
 100  | 
 16  | 
| 
 2.8  | 
 11  | 
 30.8  | 
 121  | 
 7.84  | 
| 
 2.6  | 
 12  | 
 31.2  | 
 144  | 
 6.76  | 
| 
 2.4  | 
 13  | 
 31.2  | 
 169  | 
 5.76  | 
| 
 5.2  | 
 14  | 
 72.8  | 
 196  | 
 27.04  | 
| 
 2  | 
 15  | 
 30  | 
 225  | 
 4  | 
| 
 94.2  | 
 120  | 
 498.1  | 
 1240  | 
 753.66  | 
a. Graph and plot the 16 points (Use the blank graph on the next page of this test).
b. Use the graph to estimate the Y intercept value Y Intercept = ___________
c. Use the graph to estimate Y if X = 3.5 Y Estimate = ___________
d. Calculate SSxy (4 Points)
a)

b)
| x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 0 | 11.4 | 56.25 | 30.39 | -41.34 | 
| 1 | 11.9 | 42.25 | 36.15 | -39.08 | 
| 2 | 7.1 | 30.25 | 1.47 | -6.67 | 
| 3 | 14.2 | 20.25 | 69.10 | -37.41 | 
| 4 | 5.9 | 12.25 | 0.00 | -0.04 | 
| 5 | 6.1 | 6.25 | 0.05 | -0.53 | 
| 6 | 5.4 | 2.25 | 0.24 | 0.73 | 
| 7 | 3.1 | 0.25 | 7.77 | 1.39 | 
| 8 | 5.7 | 0.25 | 0.04 | -0.09 | 
| 9 | 4.4 | 2.25 | 2.21 | -2.23 | 
| 10 | 4 | 6.25 | 3.56 | -4.72 | 
| 11 | 2.8 | 12.25 | 9.53 | -10.81 | 
| 12 | 2.6 | 20.25 | 10.81 | -14.79 | 
| 13 | 2.4 | 30.25 | 12.16 | -19.18 | 
| 14 | 5.2 | 42.25 | 0.47 | -4.47 | 
| 15 | 2 | 56.25 | 15.11 | -29.16 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 120 | 94.2 | 340 | 199.1 | -208.40 | 
| mean | 7.50 | 5.89 | SSxx | SSyy | SSxy | 
sample size ,   n =   16          
here, x̅ = Σx / n=   7.50   ,     ȳ = Σy/n =   5.89  
                  
SSxx =    Σ(x-x̅)² =    340.0000          
SSxy=   Σ(x-x̅)(y-ȳ) =   -208.4         
                  
estimated slope , ß1 = SSxy/SSxx =   -208.4   /   340.000   =   -0.6129
                  
intercept,   ß0 = y̅-ß1* x̄ =   10.4846         
                  
so, regression line is   Ŷ =   10.4846   +   -0.6129   *x
                  
Predicted Y at X=   3.5   is                  
Ŷ =   10.48456   +   -0.612941   *   3.5   =   8.339