Question

In: Math

10. Assume k is a scalar and A is a m × n matrix. Show that...

10. Assume k is a scalar and A is a m × n matrix. Show that if kA = 0 then either k = 0 or A = 0m x n

Solutions

Expert Solution

Here, k is a scalar and A is a mxn matrix.

Then, A = is a mxn matrix.

Now, kA = k =

Given kA = O

i.e., =

i.e., kaij = 0, where 1 i m and 1 j n.

which implies either k = 0 or aij = 0.

[Since we know that product of two numbers is 0 implies that one of them must be 0]

Now, aij = 0 for 1 i m, 1 j n implies =

i.e., A = .

Therefore, if kA = 0 then either k = 0 or A = 0mxn.


Related Solutions

Suppose C is a m × n matrix and A is a n × m matrix....
Suppose C is a m × n matrix and A is a n × m matrix. Assume CA = Im (Im is the m × m identity matrix). Consider the n × m system Ax = b. 1. Show that if this system is consistent then the solution is unique. 2. If C = [0 ?5 1 3 0 ?1] and A = [2 ?3   1 ?2    6 10] ,, find x (if it exists) when (a) b =[1...
Let S={1,2,3,6} and define the relation ~ on S2 by (m,n) ~ (k,l) for m+l=n+k Show...
Let S={1,2,3,6} and define the relation ~ on S2 by (m,n) ~ (k,l) for m+l=n+k Show that it is an equivalent relation Find the number of different equivalent classes and write all of them
By computing both sides, show that for an m × n matrix A, vectors u and...
By computing both sides, show that for an m × n matrix A, vectors u and v ∈ Rn , and a scalar s ∈ R, we have (a) A(sv) = s(Av); (b) A(u + v) = Au + Av; (c) A(0) = 0. Here 0 denotes the zero vector. Is the meaning of 0 on the two sides identical? Why or why not? Hint: Let x = (x1, . . . , xn) and y = (y1, . ....
Let A be an m × n matrix and B be an m × p matrix....
Let A be an m × n matrix and B be an m × p matrix. Let C =[A | B] be an m×(n + p) matrix. (a) Show that R(C) = R(A) + R(B), where R(·) denotes the range of a matrix. (b) Show that rank(C) = rank(A) + rank(B)−dim(R(A)∩R(B)).
Matrix A belongs to an n×n matrix over F. show that there exists a nonzero polynomial...
Matrix A belongs to an n×n matrix over F. show that there exists a nonzero polynomial f(x) belongs to F[x] such that f(A) =0.
let A be a real matrix of size M*N.,assume that nullity (A^T* A)=r. Find the range...
let A be a real matrix of size M*N.,assume that nullity (A^T* A)=r. Find the range of values that 'r' can take using values of 'M' and 'N'. also find the nullity (A^T)
If graph G has n edges and k component and m vertices, so m ≥ n-k....
If graph G has n edges and k component and m vertices, so m ≥ n-k. Prove it!
If graph g has n vertices and k component and m edges, so m ≥ n-k....
If graph g has n vertices and k component and m edges, so m ≥ n-k. Prove it ! Thank you...
(1) Show that the set { 1 m + 1 n : m, n ∈ N}...
(1) Show that the set { 1 m + 1 n : m, n ∈ N} is countable. (2) Show that the set {a + b √ 2 : a, b ∈ Q} is countable. (3) Show that the intersection of two countable sets is countable. (4) Show that the set of all irrational numbers is uncountable. (5) Let C = {0, 1, 2, . . . , 9}. Show that the set C ×C × · · · is...
In an attempt to explain what an elder matrix is: it is a n by m...
In an attempt to explain what an elder matrix is: it is a n by m matrix in which each row and each column is sorted in ascending order. Inputs in the matrix can either be finite integers or ∞. the ∞symbol is used when accounting for nonexistent inputs. for all questions below please answer using pseudocode and explainations (a) create an algorithm EXTRACT-MIN on an Elder Matrix that is not empty. the algorithm must run in O(m+n) time. The...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT