Question

In: Mechanical Engineering

Five kg of butane (C4H10) in a piston–cylinder assembly undergo a process from p1 = 5...

Five kg of butane (C4H10) in a piston–cylinder assembly undergo a process from p1 = 5 MPa, T1 = 500 K to p2 = 2 MPa, T2 = 450 K during which the relationship between pressure and specific volume is pvn = constant. Determine the work, in kJ.

Solutions

Expert Solution


Related Solutions

5 kg of butane (C4H10), contained in a piston-cylinder device undergoes a process from P1 =...
5 kg of butane (C4H10), contained in a piston-cylinder device undergoes a process from P1 = 5 MPa, T1 = 500 K to P2 = 3 MPa and T2 = 450 K during which the relationship between pressure and specific volume is PVn = C. a. Using the data from Generalized Compressibility chart, determine the amount of work done during the process. b. If butane is assumed an ideal gas, how would you compare the work done during the process...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 7 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.4, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 3 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.2, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 3 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.6, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
Five kg of water is contained in a piston–cylinder assembly, initially at 5 bar and 500°C....
Five kg of water is contained in a piston–cylinder assembly, initially at 5 bar and 500°C. The water is slowly heated at constant pressure to a final state. The heat transfer for the process is 2660 kJ and kinetic and potential energy effects are negligible. Determine the final volume, in m3, and the work for the process, in kJ. There is no final temperature information given.
Thirty-six grams of air in a piston–cylinder assembly undergo a Stirling cycle with a compression ratio...
Thirty-six grams of air in a piston–cylinder assembly undergo a Stirling cycle with a compression ratio of 7.5. At the beginning of the isothermal compression, the pressure and volume are 1 bar and 0.03 m3, respectively. The temperature during the isothermal expansion is 1200 K. Assuming the ideal gas model and ignoring kinetic and potential energy effects, determine: (a) the net work, in kJ. (b) the percent thermal efficiency. (c) the mean effective pressure, in bar.
Seven lbm of ammonia in a piston-cylinder assembly, initially at p1 = 60 lbf/in2 and T1...
Seven lbm of ammonia in a piston-cylinder assembly, initially at p1 = 60 lbf/in2 and T1 = 120 (one hundred twenty) oF, undergoes an isobaric process to a final state. The work done on a system is 90 Btu. At the final state, determine the temperature (in oF) and the quality of ammonia.
A gas is contained in a vertical piston–cylinder assembly by a piston with a face area...
A gas is contained in a vertical piston–cylinder assembly by a piston with a face area of 40 in2 and weight of 100 lbf. The atmosphere exerts a pressure of 14.7 lbf/in2 on top of the piston. A paddle wheel transfers 3 Btu of energy to the gas during a process in which the elevation of the piston increases slowly by 2 ft. The piston and cylinder are poor thermal conductors, and friction between the piston and cylinder can be...
One kg of water in a piston-cylinder assembly, initially at 1.5 bar and 200 C, cools...
One kg of water in a piston-cylinder assembly, initially at 1.5 bar and 200 C, cools at constant pressure with no internal irreversibilities to a final state where the water is a saturated liquid. For the water as the system, determine the work, the heat transfer, and the amounts of exergy transfer accompanying work and heat transfer, each in kJ. Let T0 = 20 °C, p0=1 bar and ignore the effects of motion and gravity. THERE ARE SOME DIFFERENT ANSWERS...
Two kg of water is contained in a piston–cylinder assembly, initially at 10 bar and 200°C....
Two kg of water is contained in a piston–cylinder assembly, initially at 10 bar and 200°C. The water is slowly heated at constant pressure to a final state. If the heat transfer for the process is 1740 kJ, determine the temperature at the final state, in °C, and the work, in kJ. Kinetic and potential energy effects are negligible. (Moran, 01/2018, p. P-23) Moran, M. J., Shapiro, H. N., Boettner, D. D., Bailey, M. B. (01/2018). Fundamentals of Engineering Thermodynamics,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT