Question

In: Statistics and Probability

Bass - Samples: The bass in Clear Lake have weights that are normally distributed with a...

Bass - Samples: The bass in Clear Lake have weights that are normally distributed with a mean of 2.3 pounds and a standard deviation of 0.9 pounds.

(a) If you catch 3 random bass from Clear Lake, find the probability that the mean weight is less than 1.0 pound. Round your answer to 4 decimal places.


(b) If you catch 3 random bass from Clear Lake, find the probability that the mean weight it is more than 3 pounds. Round your answer to 4 decimal places.

Solutions

Expert Solution

Solution :

Given that ,

mean = = 2.3

standard deviation = = 0.9

n = 3

= 2.3 and

= / n = 0.9 / 3 = 0.5196

a)

P( < 1.0) =   P(( - ) / < (1 - 2.3) / 0.5196)

= P(z < -2.50)   Using standard normal table.   

Probability = 0.0062

b)

P( > 3) = 1 - P( < 3)

= 1 - P(( - ) / < (3 - 2.3) / 0.5196)

= 1 - P(z < 1.35)

= 1 - 0.9115 Using standard normal table.

= 0.0885

Probability = 0.0885


Related Solutions

Bass - Samples: The bass in Clear Lake have weights that are normally distributed with a...
Bass - Samples: The bass in Clear Lake have weights that are normally distributed with a mean of 2.3 pounds and a standard deviation of 0.6 pounds. What percentage of all randomly caught groups of 3 bass should weigh between 2.0 and 2.5 pounds? Enter your answer as a percentage rounded to one decimal place. %
Bass - Samples: The bass in Clear Lake have weights that are normally distributed with a...
Bass - Samples: The bass in Clear Lake have weights that are normally distributed with a mean of 2.2 pounds and a standard deviation of 0.6 pounds. Suppose you catch a stringer of 6 bass with a total weight of 15.9 pounds. Here we determine how unusual this is. (a) What is the mean fish weight of your catch of 6? Round your answer to 1 decimal place. (b) If 6 bass are randomly selected from Clear Lake, find the...
Bass - Samples: The bass in Clear Lake have weights that are normally distributed with a...
Bass - Samples: The bass in Clear Lake have weights that are normally distributed with a mean of 1.9 pounds and a standard deviation of 0.8 pounds. (a) If you catch 3 random bass from Clear Lake, find the probability that the mean weight is less than 1.0 pound. Round your answer to 4 decimal places. (b) If you catch 3 random bass from Clear Lake, find the probability that the mean weight it is more than 3 pounds. Round...
Bass: The bass in Clear Lake have weights that are normally distributed with a mean of...
Bass: The bass in Clear Lake have weights that are normally distributed with a mean of 2.7 pounds and a standard deviation of 0.6 pounds. (a) Suppose you only want to keep fish that are in the top 5% as far as weight is concerned. What is the minimum weight of a keeper? Round your answer to 2 decimal places. pounds (b) Suppose you want to mount a fish if it is in the top 0.5% of those in the...
Bass: The bass in Clear Lake have weights that are normally distributed with a mean of...
Bass: The bass in Clear Lake have weights that are normally distributed with a mean of 2.7 pounds and a standard deviation of 0.9 pounds. (a) Suppose you only want to keep fish that are in the top 10% as far as weight is concerned. What is the minimum weight of a keeper? Round your answer to 2 decimal places. pounds (b) Suppose you want to mount a fish if it is in the top 0.5% of those in the...
Bass: The bass in Clear Lake have weights that are normally distributed with a mean of...
Bass: The bass in Clear Lake have weights that are normally distributed with a mean of 2.7 pounds and a standard deviation of 0.6 pounds. (a) Suppose you only want to keep fish that are in the top 10% as far as weight is concerned. What is the minimum weight of a keeper? Round your answer to 2 decimal places. pounds (b) Suppose you want to mount a fish if it is in the top 0.5% of those in the...
Bass: The bass in Clear Lake have weights that are normally distributed with a mean of...
Bass: The bass in Clear Lake have weights that are normally distributed with a mean of 2.5 pounds and a standard deviation of 0.8 pounds. Determine the weights that delineate the middle 90% of the bass in Clear Lake. Round your answers to 2 decimal places. Display keyboard shortcuts for Rich Content Editor
Bass: The bass in Clear Lake have weights that are normally distributed with a mean of...
Bass: The bass in Clear Lake have weights that are normally distributed with a mean of 2.5 pounds and a standard deviation of 0.6 pounds. (a) Suppose you only want to keep fish that are in the top 15% as far as weight is concerned. What is the minimum weight of a keeper? Round your answer to 2 decimal places. (b) Suppose you want to mount a fish if it is in the top 0.5% of those in the lake....
The bass in Clear Lake have weights that are normally distributed with a mean of 2.5...
The bass in Clear Lake have weights that are normally distributed with a mean of 2.5 pounds and a standard deviation of 0.6 pounds. (a) Suppose you only want to keep fish that are in the top 15% as far as weight is concerned. What is the minimum weight of a keeper? _____ pounds (b) Suppose you want to mount a fish if it is in the top 0.5% of those in the lake. What is the minimum weight of...
The bass in Clear Lake have weights that are normally distributed with a mean of 2.4...
The bass in Clear Lake have weights that are normally distributed with a mean of 2.4 pounds and a standard deviation of 0.6 pounds. (a) Suppose you only want to keep fish that are in the top 15% as far as weight is concerned. What is the minimum weight of a keeper? Round your answer to 2 decimal places. pounds (b) Suppose you want to mount a fish if it is in the top 0.5% of those in the lake....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT