Question

In: Advanced Math

Find the solution of the given initial value problem: 3y′′′+27y′−810y=0 y(0)=11, y′(0)=39, y′′(0)=−261

Find the solution of the given initial value problem:

3y′′′+27y′−810y=0

y(0)=11, y′(0)=39, y′′(0)=−261

Solutions

Expert Solution


Related Solutions

find the solution of the given initial value problem. y′′−2y′−3y=3te^2t y(0)=1 y′(0)=0
find the solution of the given initial value problem. y′′−2y′−3y=3te^2t y(0)=1 y′(0)=0
Find the solution to the problem of initial value 2y'''' +3y'''--16''+15y'-- 4y=0 subjected to y(0)= --...
Find the solution to the problem of initial value 2y'''' +3y'''--16''+15y'-- 4y=0 subjected to y(0)= -- 2, y'(0)=6, y''(0)=3, y'''(0)=1/2
find the solution of the given initial value problem 1. y''−2y'−3y=3te2t, y(0) =1, y'(0) =0 2....
find the solution of the given initial value problem 1. y''−2y'−3y=3te2t, y(0) =1, y'(0) =0 2.    y''+4y=3sin2t, y(0) =2, y'(0) =-1
Find the solution of the given initial value problem. 2y''+y'-4y=0 ; y(0)=0 y'(0)=1
Find the solution of the given initial value problem. 2y''+y'-4y=0 ; y(0)=0 y'(0)=1
Find the solution of the given initial value problem: y′′′+y′=sec(t), y(0)=6, y′(0)=7, y′′(0)=−3
Find the solution of the given initial value problem: y′′′+y′=sec(t), y(0)=6, y′(0)=7, y′′(0)=−3
Find the first five nonzero terms in the solution of the given initial value problem. y′′−xy′−y=0,...
Find the first five nonzero terms in the solution of the given initial value problem. y′′−xy′−y=0, y(0)=7, y′(0)=10
Find the first five nonzero terms in the solution of the given initial value problem. y′′−xy′−y=0,...
Find the first five nonzero terms in the solution of the given initial value problem. y′′−xy′−y=0, y(0)=3, y′(0)=4 Enter an exact answer. y= ?
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
Find the solution of the initial value problem y′′+12y′+32y=0, y(0)=12 and y′(0)=−84.
Find the solution of the initial value problem y′′+12y′+32y=0, y(0)=12 and y′(0)=−84.
Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT