In: Chemistry
Consider the titration of 25.0 mL of 0.175 M cyanic acid, HCNO, with 0.250 M LiOH. The Ka of HCNO is 3.5 * 10^-4.
What is the volume of LIOH required to reach the
equivalence point?
b. calculate the pH after the following volumes of LIOH have been
added:
a. 0mL
b. 5.0 mL
c. 8.75 mL
d. 17.5 mL
a)
find the volume of LiOH used to reach equivalence point
M(HCNO)*V(HCNO) =M(LiOH)*V(LiOH)
0.175 M *25.0 mL = 0.25M *V(LiOH)
V(LiOH) = 17.5 mL
Answer: 17.5 mL
b)
1)when 0.0 mL of LiOH is added
HCNO dissociates as:
HCNO -----> H+ + CNO-
0.175 0 0
0.175-x x x
Ka = [H+][CNO-]/[HCNO]
Ka = x*x/(c-x)
Assuming x can be ignored as compared to c
So, above expression becomes
Ka = x*x/(c)
so, x = sqrt (Ka*c)
x = sqrt ((3.5*10^-4)*0.175) = 7.826*10^-3
since x is comparable c, our assumption is not correct
we need to solve this using Quadratic equation
Ka = x*x/(c-x)
3.5*10^-4 = x^2/(0.175-x)
6.125*10^-5 - 3.5*10^-4 *x = x^2
x^2 + 3.5*10^-4 *x-6.125*10^-5 = 0
This is quadratic equation (ax^2+bx+c=0)
a = 1
b = 3.5*10^-4
c = -6.125*10^-5
Roots can be found by
x = {-b + sqrt(b^2-4*a*c)}/2a
x = {-b - sqrt(b^2-4*a*c)}/2a
b^2-4*a*c = 2.451*10^-4
roots are :
x = 7.653*10^-3 and x = -8.003*10^-3
since x can't be negative, the possible value of x is
x = 7.653*10^-3
use:
pH = -log [H+]
= -log (7.653*10^-3)
= 2.1162
2)when 5.0 mL of LiOH is added
Given:
M(HCNO) = 0.175 M
V(HCNO) = 25 mL
M(LiOH) = 0.25 M
V(LiOH) = 5 mL
mol(HCNO) = M(HCNO) * V(HCNO)
mol(HCNO) = 0.175 M * 25 mL = 4.375 mmol
mol(LiOH) = M(LiOH) * V(LiOH)
mol(LiOH) = 0.25 M * 5 mL = 1.25 mmol
We have:
mol(HCNO) = 4.375 mmol
mol(LiOH) = 1.25 mmol
1.25 mmol of both will react
excess HCNO remaining = 3.125 mmol
Volume of Solution = 25 + 5 = 30 mL
[HCNO] = 3.125 mmol/30 mL = 0.1042M
[CNO-] = 1.25/30 = 0.0417M
They form acidic buffer
acid is HCNO
conjugate base is CNO-
Ka = 3.5*10^-4
pKa = - log (Ka)
= - log(3.5*10^-4)
= 3.456
use:
pH = pKa + log {[conjugate base]/[acid]}
= 3.456+ log {4.167*10^-2/0.1042}
= 3.058
3)when 8.75 mL of LiOH is added
Given:
M(HCNO) = 0.175 M
V(HCNO) = 25 mL
M(LiOH) = 0.25 M
V(LiOH) = 8.75 mL
mol(HCNO) = M(HCNO) * V(HCNO)
mol(HCNO) = 0.175 M * 25 mL = 4.375 mmol
mol(LiOH) = M(LiOH) * V(LiOH)
mol(LiOH) = 0.25 M * 8.75 mL = 2.1875 mmol
We have:
mol(HCNO) = 4.375 mmol
mol(LiOH) = 2.1875 mmol
2.1875 mmol of both will react
excess HCNO remaining = 2.1875 mmol
Volume of Solution = 25 + 8.75 = 33.75 mL
[HCNO] = 2.1875 mmol/33.75 mL = 0.0648M
[CNO-] = 2.1875/33.75 = 0.0648M
They form acidic buffer
acid is HCNO
conjugate base is CNO-
Ka = 3.5*10^-4
pKa = - log (Ka)
= - log(3.5*10^-4)
= 3.456
use:
pH = pKa + log {[conjugate base]/[acid]}
= 3.456+ log {6.481*10^-2/6.481*10^-2}
= 3.456
4)when 17.5 mL of LiOH is added
Given:
M(HCNO) = 0.175 M
V(HCNO) = 25 mL
M(LiOH) = 0.25 M
V(LiOH) = 17.5 mL
mol(HCNO) = M(HCNO) * V(HCNO)
mol(HCNO) = 0.175 M * 25 mL = 4.375 mmol
mol(LiOH) = M(LiOH) * V(LiOH)
mol(LiOH) = 0.25 M * 17.5 mL = 4.375 mmol
We have:
mol(HCNO) = 4.375 mmol
mol(LiOH) = 4.375 mmol
4.375 mmol of both will react to form CNO- and H2O
CNO- here is strong base
CNO- formed = 4.375 mmol
Volume of Solution = 25 + 17.5 = 42.5 mL
Kb of CNO- = Kw/Ka = 1*10^-14/3.5*10^-4 = 2.857*10^-11
concentration ofCNO-,c = 4.375 mmol/42.5 mL = 0.1029M
CNO- dissociates as
CNO- + H2O -----> HCNO + OH-
0.1029 0 0
0.1029-x x x
Kb = [HCNO][OH-]/[CNO-]
Kb = x*x/(c-x)
Assuming x can be ignored as compared to c
So, above expression becomes
Kb = x*x/(c)
so, x = sqrt (Kb*c)
x = sqrt ((2.857*10^-11)*0.1029) = 1.715*10^-6
since c is much greater than x, our assumption is correct
so, x = 1.715*10^-6 M
[OH-] = x = 1.715*10^-6 M
use:
pOH = -log [OH-]
= -log (1.715*10^-6)
= 5.7657
use:
PH = 14 - pOH
= 14 - 5.7657
= 8.2343