Question

In: Chemistry

In a constant-pressure calorimeter, 75.0 mL of 0.830 M H2SO4 was added to 75.0 mL of...

In a constant-pressure calorimeter, 75.0 mL of 0.830 M H2SO4 was added to 75.0 mL of 0.400 M NaOH. The reaction caused the temperature of the solution to rise from 21.85 °C to 24.57 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.

Solutions

Expert Solution

Volume of H2SO4 = 75 mL.

Concentration of H2SO4 = 0.830 M

Volume of NaOH = 75 mL.

Concentration of NaOH = 0.400 M

Initial temperature of solution = 21.85˚C

Final temperature of solution = 24.57˚C

Change in temperature = (24.57 – 21.85)˚C = 2.72˚C = 2.72 K

Density of the solution = 1 g/mL.

Total volume of the solution = (75 + 75) mL = 150 mL.

Mass of the solution = volume*density = (150 mL)*(1 g/1 mL) = 150 g

Specific heat capacity of solution = 4.184 J/g.K

Heat of the reaction = (mass of solution)*(specific heat of solution)*(change in temperature) = (150 g)*(4.184 J/g.K)*(2.72 K) = 1707.072 J = 1.707 kJ.

This is half the solution; we need to calculate the heat of neutralization per mole of water produced. Now write down the molar equation of reaction:

H2SO4 + 2 KOH -------> K2SO4 + 2 H2O

The neutralization reaction is

H+ (aq) + OH- (aq) -------> H2O

From the molar equation, we see that there is a 1:1 molar ratio between KOH used and H2O produced (actually 2:2 which reduces to 1:1). Therefore, moles KOH = (75 mL)*(1 L/1000 mL)*(0.400 mole/L) = 0.03 mole.

Therefore, moles H2O produced = 0.03 mole.

The heat of neutralization will be negative since the reaction is exothermic (the reaction liberates heat and thus the temperature increases); therefore, the heat of neutralization per mole of water produced = (-1.707 kJ)/(0.03 mole) = -56.9 kJ/mol (ans).


Related Solutions

In a constant-pressure calorimeter, 75.0 mL of 0.790 M H2SO4 was added to 75.0 mL of...
In a constant-pressure calorimeter, 75.0 mL of 0.790 M H2SO4 was added to 75.0 mL of 0.360 M NaOH. The reaction caused the temperature of the solution to rise from 23.01 °C to 25.46 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant‑pressure calorimeter, 50.0 mL 50.0 mL of 0.800 M H2SO40.800 M H2SO4 was added...
In a constant‑pressure calorimeter, 50.0 mL 50.0 mL of 0.800 M H2SO40.800 M H2SO4 was added to 50.0 mL50.0 mL of 0.370 M NaOH.0.370 M NaOH. The reaction caused the temperature of the solution to rise from 23.40 ∘C23.40 ∘C to 25.92 ∘C.25.92 ∘C. If the solution has the same density and specific heat as water (1.00 g/mL1.00 g/mL and 4.184 J/(g⋅°C),4.184 J/(g⋅°C), respectively), what is Δ?ΔH for this reaction (per mole of H2OH2O produced)? Assume that the total volume...
In a constant-pressure calorimeter, 60.0 mL of 0.330 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.330 M Ba(OH)2 was added to 60.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 21.42 °C to 25.92 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 50.0 mL of 0.330 M Ba(OH)2 was added to 50.0 mL of...
In a constant-pressure calorimeter, 50.0 mL of 0.330 M Ba(OH)2 was added to 50.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 21.85 °C to 26.35 °C. what is ΔH for this reaction (KJ released per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes and that the density and heat capacity are equal to that of water.
In a constant-pressure calorimeter, 60.0 mL of 0.330 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.330 M Ba(OH)2 was added to 60.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 21.67 °C to 26.17 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 60.0 mL of 0.320 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.320 M Ba(OH)2 was added to 60.0 mL of 0.640 M HCl. The reaction caused the temperature of the solution to rise from 23.05 °C to 27.41 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 55.0 mL of 0.340 M Ba(OH)2 was added to 55.0 mL of...
In a constant-pressure calorimeter, 55.0 mL of 0.340 M Ba(OH)2 was added to 55.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 24.21 °C to 28.84 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.300 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.300 M Ba(OH)2 was added to 70.0 mL of 0.600 M HCl. The reaction caused the temperature of the solution to rise from 21.98 °C to 26.07 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 55.0 mL of 0.310 M Ba(OH)2 was added to 55.0 mL of...
In a constant-pressure calorimeter, 55.0 mL of 0.310 M Ba(OH)2 was added to 55.0 mL of 0.620 M HCl. The reaction caused the temperature of the solution to rise from 21.80 °C to 26.02 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 60.0 mL of 0.310 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.310 M Ba(OH)2 was added to 60.0 mL of 0.620 M HCl. The reaction caused the temperature of the solution to rise from 22.61 °C to 26.83 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT