Question

In: Chemistry

In a constant-pressure calorimeter, 60.0 mL of 0.330 M Ba(OH)2 was added to 60.0 mL of...

In a constant-pressure calorimeter, 60.0 mL of 0.330 M Ba(OH)2 was added to 60.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 21.67 °C to 26.17 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.

Solutions

Expert Solution

Given,

Concentration of Ba(OH)2 = 0.330 M

The volume of Ba(OH)2 = 60.0 mL x ( 1L /1000 mL) = 0.06 L

Concentration of HCl = 0.660 M

Volume of HCl = 60.0 mL x ( 1L /1000 mL) = 0.06 L

Also given,

Initial temperature of solution = 21.67 oC

Final solution of temperature = 26.17 oC

specific heat of solution = 4.184 J/g oC

Density of solution = 1.00 g /mL

Now, We know the formula,

q = m x C x T

Calculating the mass of solution,

= [ 60 mL x ( 1 g / 1 mL)] + [ 60 mL x ( 1 g / 1 mL)]

= 120 g solution

T = Tf - Ti

T = 26.17 oC - 21.67 oC

T = 4.5 oC

Now, calculating the value of "q",

q = 120 g x 4.184 J/g oC x 4.5 oC

q = 2260.44 J x ( 1kJ/1000 J)

q = 2.2604 kJ

Now, the balanced chemical reaction between Ba(OH)2 and HCl is,

Ba(OH)2(aq) + 2HCl(aq) BaCl2(aq) + 2H2O(l)

Now, calculating the number of moles of Ba(OH)2 and HCl,

= 0.06 L x 0.330 M = 0.0198 mol Ba(OH)2

Similarly,

= 0.06 L x 0.660 M = 0.0396 mol HCl

Calculating the number of moles of H2O by using the each mole of reactants and the mole ratio from the balanced chemical reaction,

= 0.0198 mol Ba(OH)2 x ( 2 mol H2O / 1 mol Ba(OH)2)

= 0.0396 mol H2O

Similarly,

= 0.0396 mol HCl x ( 1 mol H2O / 1 mol HCl)

= 0.0396 mol H2O

Thus, we know

H = -q / n(moles)

H = - 2.2604 kJ / 0.0396 mol

H = -57.1 kJ /mol of H2O


Related Solutions

In a constant-pressure calorimeter, 60.0 mL of 0.330 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.330 M Ba(OH)2 was added to 60.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 21.42 °C to 25.92 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 60.0 mL of 0.330 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.330 M Ba(OH)2 was added to 60.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 23.72 °C to 28.22 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 60.0 mL of 0.320 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.320 M Ba(OH)2 was added to 60.0 mL of 0.640 M HCl. The reaction caused the temperature of the solution to rise from 23.05 °C to 27.41 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 60.0 mL of 0.310 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.310 M Ba(OH)2 was added to 60.0 mL of 0.620 M HCl. The reaction caused the temperature of the solution to rise from 22.61 °C to 26.83 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 60.0 mL of 0.320 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.320 M Ba(OH)2 was added to 60.0 mL of 0.640 M HCl. The reaction caused the temperature of the solution to rise from 21.70 °C to 26.06 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 50.0 mL of 0.330 M Ba(OH)2 was added to 50.0 mL of...
In a constant-pressure calorimeter, 50.0 mL of 0.330 M Ba(OH)2 was added to 50.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 21.85 °C to 26.35 °C. what is ΔH for this reaction (KJ released per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes and that the density and heat capacity are equal to that of water.
In a constant-pressure calorimeter, 55.0 mL of 0.340 M Ba(OH)2 was added to 55.0 mL of...
In a constant-pressure calorimeter, 55.0 mL of 0.340 M Ba(OH)2 was added to 55.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 24.21 °C to 28.84 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.300 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.300 M Ba(OH)2 was added to 70.0 mL of 0.600 M HCl. The reaction caused the temperature of the solution to rise from 21.98 °C to 26.07 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 55.0 mL of 0.310 M Ba(OH)2 was added to 55.0 mL of...
In a constant-pressure calorimeter, 55.0 mL of 0.310 M Ba(OH)2 was added to 55.0 mL of 0.620 M HCl. The reaction caused the temperature of the solution to rise from 21.80 °C to 26.02 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 65.0 mL of 0.340 M Ba(OH)2 was added to 65.0 mL of...
In a constant-pressure calorimeter, 65.0 mL of 0.340 M Ba(OH)2 was added to 65.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 21.83 �C to 26.46 �C. If the solution has the same density and specific heat as water, what is ?H for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT