In: Statistics and Probability
Using Module 7 Excel Assignment regression data set: the p-value of income per household is significant at the:
a. 0.9223 level
b. 1% level
c. 25%
d. 100%
Quantity Demanded of Heating Oil | Income Per Household | Price of Heating Oil |
7.1 | 9 | 50 |
5.7 | 9 | 50 |
10.3 | 10 | 50 |
11.8 | 10 | 50 |
11.9 | 11 | 50 |
13.9 | 11 | 50 |
5.7 | 11 | 60 |
6.6 | 11 | 60 |
11.5 | 12 | 60 |
12.6 | 12 | 60 |
16.8 | 13 | 60 |
14.4 | 13 | 60 |
13.2 | 13 | 70 |
9.7 | 13 | 70 |
16 | 14 | 70 |
9.3 | 14 | 70 |
19 | 15 | 70 |
21.5 | 15 | 70 |
11.3 | 15 | 80 |
15.6 | 15 | 80 |
15.6 | 16 | 80 |
15.8 | 16 | 80 |
21.7 | 17 | 80 |
20.9 | 17 | 80 |
using excel>data>data analysis>Regression
we have
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.975675 | |||||
R Square | 0.951942 | |||||
Adjusted R Square | 0.947365 | |||||
Standard Error | 2.620204 | |||||
Observations | 24 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 2 | 2855.825 | 1427.913 | 207.9847 | 1.44E-14 | |
Residual | 21 | 144.1749 | 6.865471 | |||
Total | 23 | 3000 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 0.972709 | 3.206616 | 0.303344 | 0.764612 | -5.69581 | 7.641232 |
Quantity Demanded of Heating Oi | -1.02189 | 0.185315 | -5.51436 | 1.8E-05 | -1.40727 | -0.63651 |
Income Per Household | 5.966391 | 0.360503 | 16.5502 | 1.59E-13 | 5.216685 | 6.716098 |
the p-value of income per household is 0.0000 which is less than 0.01
so the p-value of income per household is significant at the 1% level