In: Statistics and Probability
A car manufacturer randomly samples and interviews 1,000 consumers in a target market. Of the 1,000 interviewed, 93 indicated that they are likely to purchase a car from this manufacturer.
Keep as many decimals as possible in your computations, but please enter the final answers to three decimal places.
-) Define the parameter p of interest in full context.
-) Compute the value of the statistic pˆ.
-) Compute the 95% confidence interval estimating p.
Select one:
(0.069, 0.117)
(0.117, 0.069)
(0.075, 0.111)
(0.111, 0.075)
-) Interpret the confidence interval in full context.
-) Using this interval, would you conclude that the proportion of consumers likely to purchase a car from this manufacturer differs from 10%? Why or why not?
A car manufacturer randomly samples and interviews 1,000 consumers in a target market. Of the 1000 interview, 93 indicated that they are likely to purchase a car from this manufacturer.
Let p be the population proportion of consumer's who are likely to purchase a car from the car manufacturer.
The estimate of the population proportion is given by
From the confidence interval, we are 95% sure that the true population proportion consumers who are likely to purchase a car from this manufacturer contains in the calculated confidence interval.
Since the confidence interval contains the value of population proportion p=0.10, we do not have enough evidence to claim that the proportion of consumers who are likely to purchase a car from this manufacturer differs from 10%.