Question

In: Statistics and Probability

n1 = 198 , n2 = 178, x1 = 38, x2 = 48 H0: p1 =...

n1 = 198 , n2 = 178, x1 = 38, x2 = 48

H0: p1 = p2

H1: p1 not= p2

a) construct a 95% CI for p1-p2

b) state whether the p value for this test is larger or smaller than .05

b)

Solutions

Expert Solution

Solution-

a) 95% CI

b)

by the test results p value is larger than 0.05

test results-


Related Solutions

Construct a confidence interval for p1−p2 at the given level of confidence. x1=365365​, n1=516516​, x2=405405​, n2=577577​,...
Construct a confidence interval for p1−p2 at the given level of confidence. x1=365365​, n1=516516​, x2=405405​, n2=577577​, 9999​% confidence
Construct a confidence interval for p1−p2 at the given level of confidence. x1=377​, n1=503​, x2=444​, n2=589​,...
Construct a confidence interval for p1−p2 at the given level of confidence. x1=377​, n1=503​, x2=444​, n2=589​, 95​% confidence
Construct a confidence interval for p1−p2 at the given level of confidence. x1=389, n1=508​, x2=425​, n2=559,...
Construct a confidence interval for p1−p2 at the given level of confidence. x1=389, n1=508​, x2=425​, n2=559, 95​%confidence The researchers are ______% confident the difference between the two population​ proportions, p1−p2​, is between _____and _____
Let n1 = 100, X1 = 43, n2 = 100, and X2 = 30. at 0.05...
Let n1 = 100, X1 = 43, n2 = 100, and X2 = 30. at 0.05 level of significance is there evidence of a significant difference between the two population proportions
10.28 Let n1 = 100, X1 = 45, n2 = 50, and X2 = 25. a....
10.28 Let n1 = 100, X1 = 45, n2 = 50, and X2 = 25. a. At the 0.01 level of significance, is there evidence of a signifi- cant difference between the two population proportions? b. Construct a 99% confidence interval estimate for the difference between the two population proportions.
Let N1=40,X1=20, N2=40 AND X2=10. At the 0.01 level of significance, is there evidence of a...
Let N1=40,X1=20, N2=40 AND X2=10. At the 0.01 level of significance, is there evidence of a significant difference between the two population proportions. Calculate the test statistic Zstat, based on the difference P1-P2. A) The test statistic, Zstat is: B) Calculate the P-value C) Construct a 95​% confidence interval estimate of the difference between the two population proportions. D) Construct a 99% confidence interval estimate of the difference between the two population proportions.
Let n1=80​, X1=60​, n2=80​, and X2=40. a. At the 0.01 level of​ significance, is there evidence...
Let n1=80​, X1=60​, n2=80​, and X2=40. a. At the 0.01 level of​ significance, is there evidence of a significant difference between the two population​ proportions? Determine the null and alternative hypotheses.(using "π") b. Calculate the test​ statistic, ZSTAT, based on the difference p1−p2. c.Calculate the​ p-value. d. Determine a conclusion. ______ the null hypothesis. There is ______ evidence to support the claim that there is a significant difference between the two population proportions. e. Construct a 99​% confidence interval estimate...
Consider two independent random samples with the following results: n1 =653 x1 =355     n2 =597 x2...
Consider two independent random samples with the following results: n1 =653 x1 =355     n2 =597 x2 =201 Use this data to find the 90% confidence interval for the true difference between the population proportions. Copy Data Step 1 of 3 : Find the point estimate that should be used in constructing the confidence interval. Round your answer to three decimal places.
Liars X1= 1.52 s1=0.32 n1= 47 Truthful X2= 1.30 s2=0.39 n2= 4 This is a table...
Liars X1= 1.52 s1=0.32 n1= 47 Truthful X2= 1.30 s2=0.39 n2= 4 This is a table summarizing the statistics between the number of words truthful people use vs people who are lying. To analyze this data; choose a t procedure, justify your choice, and perform it. Create a 95% confidence interval for (mean1 – mean2) and interpret this interval. Choose an appropriate hypothesis test and perform it (give hypothesis in words, symbols, test statistic, p-value, and conclusion) Interpret results.
Let the independent random variables X1, X2, and X3 have binomial distributions with parameters n1=3, n2=5,...
Let the independent random variables X1, X2, and X3 have binomial distributions with parameters n1=3, n2=5, n3=2 and the same probabilitiy of success p = 2/5. Find P(X1=1-X3). Find P(X1=X3). Find P(X1+X2+X3>=1). Find the expected value and variance for X1+X2+X3.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT