In: Chemistry
Consider the methanol(1) + ethanol(2) system at 101.325 kPa. Using Raoult's Law, predict the system temperature and vapor-phase composition for this mixture.
Apply Raoults:
x1*P°1 = y1*PT
x2*P°2 = y2*PT
and
y2 = 1-y1
x2 = 1-x2
so:
x1*P°1 = y1*PT
(1-x1)*P°2 = (1-y1)*PT
substitute Pt:
x1*P°1 = y1*101.3
(1-x1)*P°2 = (1-y1)*101.3
Assume a 50:50 composiiton in liquid
so:
PT = 101.325 kPa = 1.013 bar
0.5*P°1 = y1*1.013
0.5*P°2 = (1-y1)*1.013
Apply vapor pressure for antoine equations:
log10(P) = A − (B / (T + C))
P = vapor pressure (bar) T = temperature (K)
Methanol (A,B,C) = 5.15853 1569.613 -34.846
Ethanol (A,B,C) = 4.92531 1432.526 -61.819
methanol log10(P) = 5.15853 − (1569.613 / (T + -34.846))
ethanol log10(P) = 4.92531 − (1432.526 / (T + -61.819))
substitute:
0.5* (5.15853 − (1569.613 / (T + -34.846))) = y1*1.013
0.5*(4.92531 − (1432.526 / (T + -61.819)) ) = (1-y1)*1.013
solve for T,y1:
y1 = 0.5/1.013* (5.15853 − (1569.613 / (T + -34.846)))
y1 = 0.4935(5.15853 − (1569.613 / (T + -34.846)))
substitute in 2
0.4935*(4.92531 − (1432.526 / (T + -61.819)) ) = (1-0.4935(5.15853 − (1569.613 / (T + -34.846))))
solve for T
0.4935*4.92531 - 0.4935*1432.526 / (T + -61.819) = 1- 0.4935*5.15853 + 0.4935*1569.613 /(T + -34.846)
(0.4935*4.92531 - 1 + 0.4935*5.15853) = 0.4935*1569.613 /(T + -34.846)+0.4935*1432.526 / (T + -61.819)
3.976 = 774.60/(T + -34.846) + 706.9515 / (T + -61.819)
T = 49°C approx