Question

In: Statistics and Probability

Generate 100 samples of size n=8 from an exponential distribution with mean 3 . Each row...

Generate 100 samples of size n=8 from an exponential distribution with mean 3 . Each row of your data will denote an observed random sample of size 8, from an exponential distribution with mean 3. Obtain sample mean for each sample, store in another column and make a histogram for sample means. Repeat for n=100. Compare and interpret the histograms you obtained for n=8 and n=100. Submit the histograms along with your one small paragraph comparison.

Can you solve it using minitab and explain the steps (especilly how to find samples) ? Thank you in advance.

Solutions

Expert Solution

Go Calc  Random Data Exponential then enter followings:

Go Row Statistics and enter following as follows:

Go Graph Histogram Slect "Simple" Click OK Select C9 Enter OK.

From above histogram, we see that the distribution of sample mean is positively skewed.

Now repeat the process with sample size n=100 then

From above histogram we see that the distribution of sample mean is symmetric and belled shaped.


Related Solutions

Draw 1000 samples of size 10, 25, 40 from exponential distribution with mean 10 and threshold...
Draw 1000 samples of size 10, 25, 40 from exponential distribution with mean 10 and threshold 0 and calculate mean for each sample. Now produce histogram for sample mean. a. What do you notice in the shape of the distribution of sample mean as sample size increases? Also, what changes in the standard error of the sample mean? b. As the sample size increases , the sample mean goes to what number?
a. Generate samples of size 25, 50, 100 from a normal distribution. Construct probability plots. Do...
a. Generate samples of size 25, 50, 100 from a normal distribution. Construct probability plots. Do this several times to get an idea of how probability plots behave when the underlying distribution is really normal. b. Repeat part (a) for a chi-square distribution with 10 df I am required to use the R statistical program and I do not understand how to use it to solve this problem. If you could please show me the R Stats needed to solve...
r programming generate 100 samples of size n= 5 from a normal random variable with u=2,...
r programming generate 100 samples of size n= 5 from a normal random variable with u=2, o= 3 in r
Use R and perform following: Generate 1000 observations from an exponential distribution with mean 10. Generate...
Use R and perform following: Generate 1000 observations from an exponential distribution with mean 10. Generate 1000 observations from a central t-distribution with 8 degree of freedom. Make a qqplot of observations in problem 1 versus quantiles generated from a t-distribution with 8 degree of freedom. Can the t distribution be used to approximate data in part 1?Submit the plot. Repeat above part but submit a qqplot of the observations in 1 versus quantiles from an exponential with mean 1....
1. (a) Simulate a random sample of size 100 from the exponential distribution with the rate...
1. (a) Simulate a random sample of size 100 from the exponential distribution with the rate parameter λ = 10. Then make a histogram of the simulated data. (b) We use the simulated data as a data set to construct the log-likelihood function as an R function. We will find the MEL of the value λ = 10. Choose the appropriate range for the parameter λ, then make a plot of the log-likelihood function. (c) Use R function ‘optim‘ to...
7) Use Excel to generate a series of 100 random values from the exponential distribution with...
7) Use Excel to generate a series of 100 random values from the exponential distribution with a mean of 25? USING EXCEL SHOW ALL WORK
An unknown distribution has mean 82 and a standard deviation of 11.2. Samples of size n...
An unknown distribution has mean 82 and a standard deviation of 11.2. Samples of size n = 35 are drawn randomly from the population. Find the probability that the mean of the sample means is between 81.2 and 83.6.
A random sample of size 30 from an exponential distribution with mean 5 is simulated. Show...
A random sample of size 30 from an exponential distribution with mean 5 is simulated. Show the R-code to plot the empirical cdf for this sample along with the true cdf in the sample graph.
A random sample of size 30 from an exponential distribution with mean 5 is simulated. Describe...
A random sample of size 30 from an exponential distribution with mean 5 is simulated. Describe the process of plotting the empirical cdf for this sample along with the true cdf in the sample graph.
Coding Language: R Generate 100 observations from the normal distribution with mean 3 and variance 1....
Coding Language: R Generate 100 observations from the normal distribution with mean 3 and variance 1. Compute the sample average, the standard error for the sample average, and the 95% confidence interval. Repeat the above two steps 1000 times. Report (a) the mean of the 1000 sample means, (b) the standard deviation of the 1000 sample means, (c) the mean of the 1000 standard errors, and (d) how many times (out of 1000) the 95% confidence intervals include the population...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT