Question

In: Mechanical Engineering

Consider 4.0 pounds per minute of water vapor at 100 lbf/in2, 500oF, and a velocity of...

Consider 4.0 pounds per minute of water vapor at 100 lbf/in2, 500oF, and a velocity of 100 ft/s entering a nozzle operating at steady state and expanding adiabatically to the exit, where the pressure is 40 lbf/in2. The isentropic nozzle efficiency is 95.0%.  

(a) Determine the velocity of the steam at the exit, in ft/s.

(b) Determine the rate of entropy production, in Btu/min·oR.

Solutions

Expert Solution


Related Solutions

Saturated water vapor at 1000 kPa is throttled to 100 kPa. The velocity of the steam...
Saturated water vapor at 1000 kPa is throttled to 100 kPa. The velocity of the steam remains constant through the process. Determine the exit temperature of the water vapor. I know this is already awnsered in a solution for 1st edition but can someone help me understand what they do and how they picked the numbers they did from some table to get the exit temperature?
A person takes 15 minute showers in 100°F water using a 2.0 gallon per minute shower...
A person takes 15 minute showers in 100°F water using a 2.0 gallon per minute shower head. Ignoring losses, how many cubic feet of natural gas did the shower need if the house has a 40,000 BTU/hour water heater? The incoming water temperature is 50°F. Is it possible for this person to complete this shower without the water temperature dropping?
Water vapor at 800 lbf/in.2, 1000 F enters a turbine operating at steady state and expands...
Water vapor at 800 lbf/in.2, 1000 F enters a turbine operating at steady state and expands adiabatically to 2 lbf/ in.2, developing work at a rate of 490 Btu per lb of vapor flowing. Determine the condition at the turbine exit: two- phase liquid–vapor or superheated vapor? Also, evaluate the isentropic turbine efficiency. Kinetic and potential energy effects are negligible.
A piston–cylinder assembly contains 2 lb of water, initially at 100 lbf/in.2 and 600°F. The water...
A piston–cylinder assembly contains 2 lb of water, initially at 100 lbf/in.2 and 600°F. The water undergoes two processes in series: a constant-pressure process followed by a constant volume process. At the end of the constant-volume process, the temperature is 300°F and the water is a two-phase liquid–vapor mixture with a quality of 50%. Neglect kinetic and potential energy effects. Determine the work and heat transfer for each process, all in Btu.
A conduit carrying water vapor has one inlet and two exits. At the inlet, the velocity...
A conduit carrying water vapor has one inlet and two exits. At the inlet, the velocity 25 m/s, the pressure is 4 bar and the temperature is 350 Celsius. The area at the inlet is 0.2 m^2 . At both the exits, the temperature and pressure are 300 Celsius and 3 bar respectively. The volumetric flow rate is identical at the two exits. Assuming steady-state conditions, calculate the volumetric flow rate at the exits.
1. Assume that the solubility of caffeine in water is 4.0 g/100 mL and in methylene...
1. Assume that the solubility of caffeine in water is 4.0 g/100 mL and in methylene chloride it is 16.0 g/100 mL at 25°C. What is KD for this system? 3. Once you calculate KD, calculate how much caffeine would be extracted by mixing 1.0 g of caffeine in 100 mL of water and performing three consecutive extractions with 25 mL CH2Cl2 each time. Show your work. 2. Assume you changed the solvent to ethyl acetate which has a KD...
Water vapor enters a turbine operating at steady state at 480°C, 90 bar, with a velocity...
Water vapor enters a turbine operating at steady state at 480°C, 90 bar, with a velocity of 247 m/s, and expands adiabatically to the exit, where it is saturated vapor at 12 bar, with a velocity of 113 m/s. The exit diameter is 0.22 m. Determine the power developed by the turbine, in kW.
A spring with a spring constant ? k of 100 pounds per foot is loaded with...
A spring with a spring constant ? k of 100 pounds per foot is loaded with 1-pound weight and brought to equilibrium. It is then stretched an additional 1 inch and released. Find the equation of motion, the amplitude, and the period. Neglect friction. Then find y(t)
A shower head pumps water into a process at the rate of 5 gallons per minute....
A shower head pumps water into a process at the rate of 5 gallons per minute. Upon inspection, it is learned that the shower head pumps at a rate described by the uniform distribution over the interval 4 to 6 gallons per minutes. a. Find the variance of the distribution. variance= 0.333 ? b. Find the mean of the distribution. mean= 5 c. What proportion of the time does the machine pump more than 6.5 gallons per minute? d. Would...
The solubility of benzoic acid in water is 6.80g per 100 mL at 100 ℃, and 0.34g per 100 mL at 25 ℃.
The solubility of benzoic acid in water is 6.80g per 100 mL at 100 ℃, and 0.34g per 100 mL at 25 ℃.(a) Calculate the min. volume of water needed to dissolve 1.00g of benzoic acid at 100 ℃. (b) Calculate the maximum theoretical percent recovery from the recrystallization of 1.00g benzoic acid from 15 mL of water assuming the solution is filtered at 25 ℃?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT