In: Statistics and Probability
The Accompanying data describe flexural strength (Mpa) for concrete beams of a certain type as shown in below.
9.2 9.7 8.8 10.7 8.4 8.7 10.7
6.9 8.2 8.3 7.3 9.1 7.8 8.0
8.6 7.8 7.5 8.0 7.3 8.9 10.0
8.8 8.7 12.6 12.3 12.8 11.7
6-b. Calculate and interpret a point estimate of the population standard deviation.
6-c. Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 11 Mpa
6-d. Calculate a point estimate of the population coefficient of variation.
1)
X | (X - X̄)² |
9.2 | 0.00 |
9.7 | 0.31 |
8.8 | 0.12 |
10.7 | 2.43 |
8.4 | 0.55 |
8.7 | 0.19 |
10.7 | 2.431 |
6.9 | 5.021 |
8.2 | 0.885 |
8.3 | 0.707 |
7.3 | 3.388 |
9.1 | 0.002 |
7.8 | 1.798 |
8 | 1.301 |
8.6 | 0.292 |
7.8 | 1.798 |
7.5 | 2.692 |
8 | 1.301 |
7.3 | 3.388 |
8.9 | 0.058 |
10 | 0.738 |
8.8 | 0.116 |
8.7 | 0.194 |
12.6 | 11.966 |
12.3 | 9.981 |
12.8 | 13.3902 |
11.7 | 6.5498 |
X | (X - X̄)² | |
total sum | 246.8 | 71.61 |
n | 27 | 27 |
Point estimate Population std dev = √ [ Σ(X
- X̄)²/(n-1)] = √ (71.6052/26)
= 1.6595
2)
Number of Items of Interest, x = 4
Sample Size, n = 27
Sample Proportion , p̂ = x/n =
0.1481
3)
mean = ΣX/n = 246.800
/ 27 = 9.1407
coefficient of variation = S.D / Mean * 100
= 1.6595 / 9.1407
= 0.181550647 * 100
= 18.16 %
THANKS
revert back for doubt
please upvote