Question

In: Statistics and Probability

A manufacturer of colored candies states that 13​% of the candies in a bag should be​...

A manufacturer of colored candies states that 13​% of the candies in a bag should be​ brown, 14​% ​yellow, 13​% ​red,24​% blue20​%orange, and 16​%

green. A student randomly selected a bag of colored candies. He counted the number of candies of each color and obtained the results shown in the table. Test whether the bag of colored candies follows the distribution stated above at

alpha equalsα=0.05 level of significance. Using the level of significance

alpha equalsα=0.05, test whether the color distribution is the same.Click here to view the table.

Click here to view the table of critical values of the chi-square distribution

Determine the null and alternative hypotheses. Choose the correct answer below.

A.H0​:The distribution of colors is at least as uniform as stated by the manufacturer.

H1​:The distribution of colors is less uniform than stated by the manufacturer.

B.H0​:The distribution of colors is not the same as stated by the manufacturer.

H1​:The distribution of colors is the same as stated by the manufacturer.

C.H0​:The distribution of colors is the same as stated by the manufacturer.

H1​:The distribution of colors is not the same as stated by the manufacturer.

D.H0​:The distribution of colors is at most as uniform as stated by the manufacturer.

H1​:The distribution of colors is more uniform than stated by the manufacturer.

Compute the expected counts for each color.

Color

Frequency

Expected Count

Brown

6161

nothing

Yellow

6666

nothing

Red

5555

nothing

Blue

6363

nothing

Orange

9393

nothing

Green

6666

nothing

​(Round to two decimal places as​ needed.)

What is the test​ statistic?

chi Subscript 0 Superscript 2χ20

equals=

nothing

​(Round to three decimal places as​ needed.)

What is the range of​ P-values of the​ test?

The range of​ P-values of the test is

between 0.01 and 0.025.

between 0.025 and 0.05.

less than 0.01.

between 0.05 and 0.10.

greater than 0.10.

Based on the​ results, do the colors follow the same distribution as stated in the​ problem?

A.Do not reject Upper H 0Do not reject H0.

There insufficient sufficient evidence that the distribution of colors is not the same as stated by the manufacturer.

B. Reject Upper H 0Reject H0. There is sufficient sufficientevidence that the distribution of colors is not the same as stated by the manufacturer.

C. Do not reject Upper H 0Do not reject H0.

There is not sufficient not sufficient evidence that the distribution of colors is not the same as stated by the manufacturer.

D. Reject Upper H 0Reject H0.

There is not sufficientnot sufficient

evidence that the distribution of colors is not the same as stated by the manufacturer.

Solutions

Expert Solution

Solution:-

State the hypotheses. The first step is to state the null hypothesis and an alternative hypothesis.

Null hypothesis: There is sufficient sufficient evidence that the distribution of colors is the same as stated by the manufacturer.

Alternative hypothesis: There is sufficient sufficient evidence that the distribution of colors is not the same as stated by the manufacturer.

Formulate an analysis plan. For this analysis, the significance level is 0.05. Using sample data, we will conduct a chi-square goodness of fit test of the null hypothesis.

Analyze sample data. Applying the chi-square goodness of fit test to sample data, we compute the degrees of freedom, the expected frequency counts, and the chi-square test statistic. Based on the chi-square statistic and the degrees of freedom, we determine the P-value.

DF = k - 1 = 6 - 1
D.F = 5
(Ei) = n * pi


X2 = 16.827

where DF is the degrees of freedom, k is the number of levels of the categorical variable, n is the number of observations in the sample, Ei is the expected frequency count for level i, Oi is the observed frequency count for level i, and X2 is the chi-square test statistic.

The P-value is the probability that a chi-square statistic having 5 degrees of freedom is more extreme than 16.827.

We use the Chi-Square Distribution Calculator to find P(X2 > 16.827) = 0.0048.

The range of​ P-values of the test is less than 0.01.

Interpret results. Since the P-value (0.0048) is less than the significance level (0.05), we have to reject the null hypothesis.

B) Reject H0. There is sufficient sufficient evidence that the distribution of colors is not the same as stated by the manufacturer.


Related Solutions

A manufacturer of colored candies states that 13​% of the candies in a bag should be​...
A manufacturer of colored candies states that 13​% of the candies in a bag should be​ brown,14​% ​yellow, 13​% ​red, 24​% ​blue, 20​% ​orange, and 16​% green. A student randomly selected a bag of colored candies. He counted the number of candies of each color and obtained the results shown in the table. Test whether the bag of colored candies follows the distribution stated above at the α= 0.05 level of significance. Colored Candies in a bag Color Brown Yellow...
A manufacturer of colored candies states that 13​% of the candies in a bag should be​...
A manufacturer of colored candies states that 13​% of the candies in a bag should be​ brown, 14​% ​yellow, 13​% ​red, 24​% ​blue, 20​% ​orange, and 16​% green. A student randomly selected a bag of colored candies. He counted the number of candies of each color and obtained the results shown in the table. Test whether the bag of colored candies follows the distribution stated above at the α=0.05 level of significance. Colored Candies in a bag Color Brown Yellow...
A manufacturer of colored candies states that 13​% of the candies in a bag should be​...
A manufacturer of colored candies states that 13​% of the candies in a bag should be​ brown, 14​% yellow, 13​% ​red, 24​% ​blue, 20​% orange, and 16​% green. A student randomly selected a bag of colored candies. He counted the number of candies of each color and obtained the results shown in the table. Test whether the bag of colored candies follows the distribution stated above at the alpha=0.05 level of significance. Determine the null and alternative hypotheses. Compute the...
A manufacturer of colored candies states that 13​% of the candies in a bag should be​...
A manufacturer of colored candies states that 13​% of the candies in a bag should be​ brown,14​% ​yellow,13​% ​red, 24% ​blue, 20% ​orange, and 16% green. A student randomly selected a bag of colored candies. He counted the number of candies of each color and obtained the results shown in the table. Test whether the bag of colored candies follows the distribution stated above at the alpha equalsα=0.05 level of significance Color Frequency Claimed Proportion Brown 60 0.13 Yellow 67...
A manufacturer of colored candies states that 13​% of the candies in a bag should be​...
A manufacturer of colored candies states that 13​% of the candies in a bag should be​ brown, 14​% yellow, 13​% red, 24​% blue, 20​% orange, and 16​% green. A student randomly selected a bag of colored candies. He counted the number of candies of each color and obtained the results shown in the table. Test whether the bag of colored candies follows the distribution stated above at the α=0.05 level of significance. Color Frequency Expected Count Brown 59 Yellow 63...
A manufacturer of colored candies states that 13​% of the candies in a bag should be​...
A manufacturer of colored candies states that 13​% of the candies in a bag should be​ brown, 14​% ​yellow, 13​% ​red, 24​% ​blue, 20​% ​orange, and 16​% green. A student randomly selected a bag of colored candies. He counted the number of candies of each color and obtained the results shown in the table. Test whether the bag of colored candies follows the distribution stated above at the a=0.05 level of significance. Color Brown Yellow Red Blue Orange Green Frequency...
A manufacturer of colored candies states that 1313​% of the candies in a bag should be​...
A manufacturer of colored candies states that 1313​% of the candies in a bag should be​ brown, 1414​% ​yellow, 1313​% ​red, 2424​% ​blue, 2020​% ​orange, and 1616​% green. A student randomly selected a bag of colored candies. He counted the number of candies of each color and obtained the results shown in the table. Test whether the bag of colored candies follows the distribution stated above at the alpha equalsα=0.050.05 level of significance. LOADING... Click the icon to view the...
manufacturer of colored candies states that 1313​% of the candies in a bag should be​ brown,...
manufacturer of colored candies states that 1313​% of the candies in a bag should be​ brown, 1414​% ​yellow, 1313​% ​red, 2424​% ​blue, 2020​% ​orange, and 1616​% green. A student randomly selected a bag of colored candies. He counted the number of candies of each color and obtained the results shown in the table. Test whether the bag of colored candies follows the distribution stated above at the alpha equalsα=0.050.05 level of significance. LOADING... Click the icon to view the table....
A manufacturer of colored candies states that 13​%of the candies in a bag should be​ brown,14​%​yellow,13​%​red,24​%​blue,20​%...
A manufacturer of colored candies states that 13​%of the candies in a bag should be​ brown,14​%​yellow,13​%​red,24​%​blue,20​% ​orange, and16% green. A student randomly selected a bag of colored candies. He counted the number of candies of each color and obtained the results shown in the table. Test whether the bag of colored candies follows the distribution stated above at the alpha equalsα=0.05 level of significance. Colored Candies in a bag Color Brown Yellow Red Blue Orange Green Frequency 61 67 57...
partial credit, 12.1.11-T A manufacturer of colored candies states that 13​% of the candies in a...
partial credit, 12.1.11-T A manufacturer of colored candies states that 13​% of the candies in a bag should be​ brown, 14​% ​yellow, 13​% ​red, 24​% ​blue, 20​% ​orange, and 16​% green. A student randomly selected a bag of colored candies. He counted the number of candies of each color and obtained the results shown in the table. Test whether the bag of colored candies follows the distribution stated above at the alpha equals0.05 level of significance. Determine the null and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT